
Cryptocurrency Statistical Arbitrage Based on
Cointegration and Preference Relations

Yingyao Liu, Feixue Ouyang, Xiaoling Huang, and Shijie Shao
School of Data Science

The Chinese University of Hong Kong, Shenzhen
{120090628, 121090427, 121090204, 120090491}@link.cuhk.edu.cn

Abstract

This paper presents an analysis of constructing cointegrated portfolios of cryp-
tocurrencies, utilizing the Johansen cointegration test and Engle-Granger two-step
approach. Our study focuses on the development and evaluation of two distinct
cryptocurrency arbitrage strategies based on the identified cointegration relation-
ships. We employ statistical tests to confirm the presence of cointegration among
selected cryptocurrencies, namely Bitcoin (BTC), Ethereum (ETH), Bitcoin Cash
(BCH), and Litecoin (LTC). Then, by trading the spread and assigning weights
based on the cointegration relationship, we devised two trading strategies to capture
arbitrage opportunities when the conintegration relationship is temporarily violated.
The findings suggest the viability of cointegration-based arbitrage strategies in
cryptocurrency markets, providing insights for investors and traders seeking to
capitalize on price inefficiencies.

1 Introduction

Cryptocurrency markets have emerged as a dynamic and rapidly evolving domain, characterized by
their volatility and potential for significant gains. Within this landscape, arbitrage—the practice of
exploiting price differentials for profit—has garnered considerable attention from investors, traders,
and researchers alike. [1] The allure of arbitrage lies in its promise of generating returns by capitalizing
on price inefficiencies across various cryptocurrency exchanges. [2]

The emergence of Bitcoin and numerous alternative cryptocurrencies has opened up new avenues for
investors and traders. Recent research conducted by Chuen et al. (2017) discovered minimal corre-
lations between the Cryptocurrency Index (CRIX), a diversified portfolio of cryptocurrencies, and
traditional assets. [3]This means that investing in the cryptocurrency market can, to a certain extent,
mitigate the risks associated with traditional markets, making the portfolio risk more diversified.

In contrast to traditional equity markets, cryptocurrencies often exhibit strong correlations. For
instance, the daily returns correlations among the major digital currencies—BTC, ETH, LTC, and
BCH—exceeded 75 percent, as depicted in Figure 1. Due to the high volatility of cryptocurrencies,
investments in cryptocurrencies typically adopt neutral trading strategies. The strong correlations
among cryptocurrencies motivate us to explore statistical arbitrage strategies based on cointegration
or mean reversion. [4]Currently, due to the absence of fundamental financial information for cryp-
tocurrencies, most research on cryptocurrency trading is based on technical analysis or arbitrage
exploiting price differentials across various exchanges. [5]

Figure 1: Correlation in daily returns of BTC, ETH, LTC, and BCH [4]

In this study, we obtained data from the Binance platform and processed it accordingly.We investigate
the process of forming a cointegrated group of cryptocurrencies. This process entails conducting
various statistical tests, including the Johansen cointegration test (Johansen, 1988), and employing the
classical 2-step approach developed by Engle and Granger (1987). After establishing the cointegration
relationships, we developed two distinct statistical arbitrage strategies based on the findings of our
research. Our strategies enrich the application of statistical arbitrage in cryptocurrency investment.

2 Data Preparation

2.1 Data Collection

Binance is one of the leading cryptocurrency exchange platforms globally, founded in 2017. With
millions of users worldwide, Binance offers a wide range of cryptocurrency trading services, including
spot trading, futures trading, margin trading, among others, along with a variety of cryptocurrency
financial derivatives and tools.

The data for our analysis is sourced from the Binance platform, covering both spot and futures trading.
We obtained the data from the following two URLs:

• Spot: https://data.binance.vision/data/spot/monthly/klines

• Futures: https://data.binance.vision/data/futures/um/monthly/klines

The downloaded data primarily includes trading data for the following four major cryptocurrency
assets paired against the US Dollar (USDT):

• Bitcoin (BTCUSDT)

• Ethereum (ETHUSDT)

• Litecoin (LTCUSDT)

• Bitcoin Cash (BCHUSDT)

These assets are among the most representative and liquid assets in the cryptocurrency market and
are actively traded on the Binance platform.

Table 5 offers a preview of the downloaded data.

2

https://data.binance.vision/data/spot/monthly/klines
https://data.binance.vision/data/futures/um/monthly/klines

Table 1: Preview of BTCUSDT Spot Trading Data
open_time open high low close volume

0 2022-01-01 00:00:00 46216.93 46271.08 46208.37 46250.00 40.57574
1 2022-01-01 00:01:00 46250.00 46344.23 46234.39 46312.76 42.38106
2 2022-01-01 00:02:00 46312.76 46381.69 46292.75 46368.73 51.29955
...

1051117 2023-12-31 23:57:00 42240.92 42276.65 42240.92 42276.65 9.58764
1051118 2023-12-31 23:58:00 42276.64 42281.10 42276.64 42281.10 8.38641
1051119 2023-12-31 23:59:00 42281.10 42283.59 42258.94 42283.58 38.92904

2.2 Data Preprocess

In this section, we perform preprocessing steps on the collected trading data. The main data
preprocessing tasks include calculating the differences between the opening and closing prices
(open_diff and close_diff), as well as computing the returns.

• Opening and Closing Price Differences (open_diff, close_diff): We calculate the differences
between the opening and closing prices for each observation in the dataset. The opening
difference (open_difft) and closing difference (close_difft) for a given time period t are
computed as follows:

open_difft = opent − opent−1

close_difft = closet − closet−1

where opent and closet represent the opening and closing prices of the current time period t,
respectively, and closet−1 represents the closing price of the previous time period.

• Returns: Additionally, we compute the returns for each observation. The return (Returnt)
for a given time period t is calculated as the percentage change in price from the opening to
the closing price, using the formula:

returnt =
close_difft
closet−1

where close_difft represents the closing difference for the current time period, and closet−1

represents the closing price of the previous time period.

These preprocessing steps are crucial for preparing the data for further analysis and modeling.
Once completed, the preprocessed dataset will be ready for exploratory data analysis and model
development.

3 Cointegration Test and Analysis

3.1 Engle-Granger Two-Step Method

Before we commence this section, it’s important to note that the EG statistical tests herein utilize
minutelevel data from January to February 2021. Our objective is to validate the cointegration
relationships among cryptocurrencies for spread construction. This section is solely dedicated
to discussing EG statistical tests and methodologies for construction, and any observed spread
relationships do not necessarily imply strategies discussed later on.

The classical approach to cointegration testing, developed by Engle and Granger (1987), is known for
its ability to capture long-term co-movements. [6] Initially, we conduct a linear regression analysis
on some given I(1) time series data, then we should test the stationarity of the residuals. We must
ensure that the residuals from the OLS model are stationary; otherwise, we may encounter issues
with spurious regression.In order to ensure stationarity, a series of unit-root tests are conducted on the
residuals of the Ordinary Least Squares (OLS) model, encompassing the Augmented Dickey Fuller
(ADF) test (Dickey and Fuller, 1979) [7], the Phillips-Peron (PP) test (Phillips and Perron, 1988),
and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992) [8].

Given the objective of examining stationarity across price series, first-order price differences, and
residuals derived from the OLS model, the testing hypotheses are formulated as follows:

3

• Augmented Dickey Fuller test and Phillips-Peron test:

– H0: Presence of unit root in observable price series
– Ha: Unit root does not exist in observable price series

• Kwiatkowski-Phillips-Schmidt-Shin test:

– H0: Unit root does not exist in observable price series
– Ha: Presence of unit root in observable price series

The Engle-Granger method involves a linear regression on given time series data. In this study, we
use BTC time series data. In fact, the choice of which cryptocurrency to use as the dependent variable
is inconsequential. We propose the OLS model as follow:

BTCt = c+ β1ETHt + β2LTCt + β3BCHt + ϵt

Once a cointegrating relationship has been established, a battery of three stationarity tests is conducted
on the residuals. The prices of these cryptocurrency assets are considered cointegrated only if they all
exhibit I(1) processes and the residuals ϵt from the above Ordinary Least Squares (OLS) model are
stationary.

After establishing the cointegrating relationship, we perform 3 stationarity tests on the residuals. We
can see the results in Table 2. According to the result, we accept the null hypothesis (there exits
unit-root in time series) from both ADF and PP tests. It shows that the daily opening prices of all 4
cryptocurrencies are non-stationary. From the KPSS test, we should reject the null hypothesis which
again indicates that daily opening prices of all 4 cryptocurrencies are non-stationary. However, after
the first differencing, the opening prices of all 4 cryptocurrencies become stationary. Therefore, we
can conclude that the opening prices of BTC, ETH, LTC, and BCH are I(1) processes.

Table 2: Summary of p-values from stationarity tests on cryptocurrencies’ prices and their first order
differences

BTCt ETHt LTCt BCHt ∆BTCt ∆ETHt ∆LTCt ∆BCHt

ADF-test 0.50 0.35 0.18 0.32 0.0 0.0 0.0 0.0
PP-test 0.48 0.32 0.18 0.30 0.0 0.0 0.0 0.0

KPSS-test 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1

We establish linear relationships between BTC with ETH, LTC and BCH,see Figure 2. Notably,
all the regressing coefficients appear to be statistically significant with p-values less than 1%. The
adjusted R-squared is 70.9%, which is relatively high.

Figure 2: Ordinary least square regression model for BTC

4

From Figure above, we obtain the following linear model:

BTCt = 0.052 + 13.40ETHt + 46.02LTCt + 6.55BCHt + ϵt

Next we conduct stationarity tests on the residuals. The result is showed as Figure 4. The results from
all three stationarity tests affirm the stability of residuals derived from the linear regression model,
indicating their stationary nature over time. Consequently, our approach suggests that the prices of
BTC, ETH, LTC, and BCH are inherently cointegrated. With this validation, one can proceed to
construct the spread utilizing the proposed linear coefficients:

SPREADt = BTCt − 13.40ETHt − 46.02LTCt − 6.55BCHt

Figure 3: Stationarity tests on residuals

3.2 Johansen Method

A general vector autoregressive model is similar to the AR(p) model except that each quantity is
vector valued and matrices are used as the coefficients. The general form of the VAR(p) model,
without drift, is given by:

xt = µ+A1xt−1 +A2xt−2 + . . .+Apxt−p + wt

, where µ is the vector-valued mean of the series, Ai are the coefficient matrices for each lag and wt

is a multivariate Gaussian noise term with mean zero.

At this stage we can form a Vector Error Correction Model (VECM) by differencing the series:

∆xt = µ+Πxt−1 + Γ1∆xt−1 + . . .+ Γp−1∆xt−p+1 + wt

where ∆xt = xt − xt−1 is the differencing operator, A is the coefficient matrix for the first lag and
Γi are the matrices for each differenced lag.

The Johansen test checks for the situation of no cointegration, which occurs when the matrix A = 0.
The Johansen test is more flexible than the CADF procedure outlined in the previous article and can
check for multiple linear combinations of time series for forming stationary portfolios.

To achieve this an eigenvalue decomposition of A is carried out. The rank of the matrix A is given by
r and the Johansen test sequentially tests whether this rank r is equal to zero, equal to one, through to
r = n− 1, where n is the number of time series under test.

The null hypothesis of r = 0 means that there is no cointegration at all. A rank r > 0 implies a
cointegrating relationship between two or possibly more time series.

The eigenvalue decomposition results in a set of eigenvectors. The components of the largest
eigenvector admits the important property of forming the coefficients of a linear combination of time
series to produce a stationary portfolio.

And another approach of Johansen test is using the trace statistics of matrix A, which can achieve
similar results as the eigenvalue approach.But according to Hjalmarsson, Erik and Osterholm, Par [9],
Overall, the performance of the trace test appears worse than that of the maximum eigenvalue
test. Both tests, however, have large enough deviations from the nominal size that practitioners
should be aware of the problems associated with Johansen’s procedures under these circumstances.

5

The proposed sequence of additional tests helps alleviate some of the sensitivity of the Johansen
procedures to deviations from the strict unit-root assumption. They do not, however, eliminate the
problem.

As an example, we can do the Johansen test with respect to the futures data with trace statistics:

• Trace statistics: 61.857718.8316
8.5903
2.1639


• Trace critical values: 44.4929 47.8545 54.6815

27.0669 29.7961 35.4628
13.4294 15.4943 19.9349
2.7055 3.8415 6.6349


• Hypothesis test using trace statistics:

– Hypothesis 0: r = 0 (No cointegrating relationship)
trace statistic: 61.8577 > critical value: 54.6815
⇒ Reject hypothesis 0 at 99%

– Hypothesis 1: r <= 1 (At most 1 cointegrating relationship)
trace statistic: 18.8316 < critical value: 27.0669
⇒ Hypothesis 1 can’t be rejected

– We claim that there exists one integrating relationship

We can also do the Johansen test with respect to the futures data with eigenvalue statistics:

• Eigenvalue statistics: 43.026010.2413
6.4263
2.1639


• Eigenvalue critical values: 25.1236 27.5858 32.7172

18.8928 21.1314 25.865
12.2971 14.2639 18.52
2.7055 3.8415 6.6349


• Hypothesis test using trace statistics:

– Hypothesis 0: r = 0 (No cointegrating relationship)
trace statistic: 43.0260 > critical value: 32.7172
⇒ Reject hypothesis 0 at 99%

– Hypothesis 1: r <= 1 (At most 1 cointegrating relationship)
trace statistic: 10.2413 < critical value: 18.8928
⇒ Hypothesis 1 can’t be rejected

– We claim that there exists one cointegrating relationship

And after making sure the existence of cointegrating relationship, we can construct the spread.

• Normalized eigenvector matrix: 1.0000e+ 00 1.0000e+ 00 1.0000e+ 00 1.0000e+ 00
3.0900e+ 00 −2.0389e+ 01 −5.1609e+ 01 −3.9532e+ 00
1.9015e+ 02 4.1910e+ 01 1.3235e+ 03 −2.2238e+ 02
−1.7479e+ 02 2.9793e+ 01 3.1638e+ 01 1.9089e+ 01


6

• Construct spread using the 1st column of normalized eigenvector matrix:

spread = BTC + 3.09× ETH + 190.16× LTC + 174.80× BCH

• Augmented Dickey–Fuller test of constructed spread

– ADF statistics: -6.27
– ADF p-value: 0.00
– ADF lags: 1
– ADF number of observations: 525598
– ADF critical values: {1%: -3.4303, 5%: -2.8615, 10%: -2.5667}
– Stationary: True

Therefore, the Johansen test provides us a proof that the ointegration relationship exists, and the
subsequent ADF test convinces us that the residual/spread is stationary, which can be used for further
trading.

3.3 Portfolio Time series

The main purpose of our cointegration testing procedure is to construct a tradable mean reverting
portfolio. From a trading perspective, periodic movements or fluctuations that lead to frequent
crossing of the equilibrium levels from both directions are desired, especially given that entry and
exit rules are based on deviations from the mean price. For this reason, figure suggest that model
from Engle-Granger Method is practical to trade.

Figure 4: Spread Time series

Next, we construct a time series model to capture dynamic of the spread in order to design the trading
rules. Generally, we expect the spread to be highly mean-reverting since that is the main criterion we
used to choose the 4 crypto-assets in the first place. In discrete time, the spread is often assumed to
be stationary Autoregressive Moving Average (ARIMA) processes since they are also mean-reverting
by design. This is the basic requirement we set forth to designing our trading signals.To estimate the
orders and parameters of an ARMA process, we rely on sample autocorrelation function (ACF) and
partial autocorrelation function (PACF) plots.As suggested by ACF and PACF plots respectively in
Figure 5, the residuals can be modeled by ARIMA(1,0,1). We summarize the test in Figure 6.

7

Figure 5: ACF and PACF graph of residual

Figure 6: Fitting the spread to the ARIMA(1, 0, 1) model

To ensure that ARMA(1,0,1) is an appropriate model, Ljung-Box test is performed on residuals
from the ARIMA model to check for the overall randomness and no autocorrelation in the residual
time series. Ljung-Box test hypothesis: Ho: Price series are independent, or no serial correlations
Ha: Price series are not independent, or they exhibit serial correlations The p-value of 0.44 for
the Ljung-Box test on residuals implies the failure to reject the null hypothesis that there is no
autocorrelation in the residuals. We conclude that prices of the spread are ARIMA(1,0,1) processes.

4 Statistical Arbitrage Strategies

In this section, we explored 2 trading strategies to capture arbitrage opportunities. In Section 4.1, we
directly trade the spread constructed by linear regression when its value significantly deviates from
the mean value. In Section 4.2, we make use of the spreads between pairs to construct preference
relationships between assets, and assigned weights accordingly to each asset.

In order to make this backtest closer to real market trading, we set the transaction cost to be 0.01%.

4.1 Trading the spread

4.1.1 Strategy validation with full-sample

In trading practices, finding the right times for entry and exit is key to a profitable trading system. As
previously mentioned, the default entry and exit thresholds in back-testing strategy are typically set
around 1 deviation, denoted by σ, above and below the mean spread level, assuming that traders can
go both long and short on the spread. It is crucial to assure that these entry and exit levels are set

8

to maximize profits in terms of the trading costs and transaction frequency. Thus, by back-testing
a trading system with multiple entry/exit levels, we can get a sense of how profitable the system is
by looking at different performance criteria such as profit and loss, Sharpe ratio, and more. A mean
reversion strategy for trading the spread is described by the following linear combination:

SPREADt = −β1ETHt − β2LTCt − β3BCHt +BTCt

Different from traditional equity market, traders can purchase fractional shares up to 8 decimal places
in the cryptocurrency market. Thus we do not have a requirement to purchase integer shares of
cryptocurrency. Upon receiving a signal to open a position, we will either go long or short on the
maximum number of spreads based on the cash we hold. If there is insufficient cash available, we
will allow the cash balance to go negative, indicating borrowed funds, and simultaneously go long
on one unit of the spread. For short positions, the borrowed portfolio value will not exceed the
current cash balance. Similarly, if cash is too scarce to short one unit of the spread without exceeding
leverage limits, we will still choose to short one unit. This approach allows us to maximize the use of
funds when capital is abundant and to execute trades when capital is scarce. In this case, we are only
concerned with whether the trading strategy is theoretically feasible, so we use the full sample to
compute the mean and standard deviation, and do not take into account extraterritorial costs such as
transaction costs. Let us now state our trading rule:
(i) Long the spread/Exit short position when

SPREADt < µ+ cσ

(ii) Short the spread/Exit long position when

SPREADt > µ− cσ

where c is a multiple we choose to set our entry/exit thresholds.

Figure 7: Trading strategy with full sample

From the figure, we observe that able to make profits during the mean-reverting process of spread.
Then we summarize some trade statistics to evaluate the performance of our strategy:

Table 3: Statistics for trading strategies
Total Trades Average Win Max Equity Min Equity Win Rate Drawdown

4 210109 865371 -16933 790266 558709

This strategy is very robust, with extremely high win rates, very low drawdown, and basically steady
profits every time you open a position.However, to apply this trading strategy to real trading, we
need to consider a few more points. First, we need information from past samples to estimate the
long-term mean and standard deviation. Second, the cointegration relation may be adjusted as the
market changes. And, the optimal trading threshold c needs to be further determined. Finally, we
need to consider transaction costs.

9

4.1.2 Dynamic estimation of cointegration, mean and standard deviation

Figure 8: Trading strategy

To take slippage cost into consideration, we use VWAP(Volume-Weighted Average Price) to represent
real transaction price. The formula of VWAP is given:

VWAP =

∑
(Pricet × Volumet)∑

Volumet
To ensure robust estimation of cointegration and associated statistics such as mean and standard
deviation, we implement an expanding window methodology. Initially, we define a minimum window
length, which is critical for accurate parameter estimation. Within this window, we estimate the
cointegration relationship among the cryptocurrencies and compute the spread. From this, we derive
the mean and standard deviation of the spread, which are essential for signal generation.

Using the cointegration coefficients obtained from the analysis, we project future spreads. To enhance
the computational efficiency of our model, we introduce a parameter ’step’, which determines the

10

prediction interval for the spread. After each prediction, we expand the window to include the data
from this interval before commencing the next cycle. This approach not only adapts to market
changes by incorporating new data continuously but also ensures that each estimation leverages the
maximum available data for accuracy.

To find the best threshold c for trading, we conduct a simple grid search to find best parameter. The
summary statistics is given:

Table 4: Statistics for trading strategies with different entry and exit thresholds
Threshold level 0.5σ 0.7σ σ 1.3σ 1.5σ

Num.Trades 5 5 5 3 3
Win Rate 100 100 100 100 100

Average Win 5117 8730 30839 17324 46271
Max Equity 39501 58190 180754 80506 182924
Min Equity -6828 -4180 -16992 -27208 -68409
Final Equity 24306 43078 142486 60716 154661
Drawdown 26533 39800 119402 68124 158956

4.2 Construct portfolio from preference relations

4.2.1 Model Setup

In order to further optimize the arbitrage portfolio, we managed to estimate the utility of each asset
from their preference relationships, and hence decide their weights accordingly. [10] The detailed
setting is as follows:

We define the preference function ρ∗ : S ×S → R that describes the preference relationship between
a pair. For instance, ρ∗(si, sj) > 0 implies that si is preferred to sj , and hence we tend to long si and
short sj . Based on ρ∗, we can derive a latent utility function u∗ such that the following condition is
satisfied:

ρ∗(si, sj) = u∗(si)− u∗(sj).

Additionally, more assumptions on ρ∗ and u∗ can be derived:

ρ∗(si, si) = u∗(si)− u∗(si) = 0, (1)

ρ∗(si, sj) = −ρ∗(sj , si), (2)

(ρ∗(si, sj) > 0) ∧ (ρ∗(sj , sk) > 0) ⇒ (ρ∗(si, sk) > 0). (3)

This implies that the ranking among assets are transitive.

Considering all asset pairs, we can express it in a matrix form:

Bu∗ = ρ∗

B =


1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1


We can easily estimate ρ∗ from the deviation of pair spreads, but this does not guarantee the
transitivity of the preference relationship described in (1)(2)(3). Hence, we define ρ : S × S → R
as the empirically estimated preference function, i.e., the price spread. By solving the following
optimization problem, we can obtain the preference function ρ∗ and utility function u∗:

ρ∗ = arg min
ρ′∈P∗

d(ρ′, ρ)

s.t. Bu∗ = ρ∗

11

N∑
i=0

u∗
i = 0

The authors of the original paper derived the analytical solutions as follows, and we have displayed
the detailed derivation in Appendix A:

u∗ =
1

N
BT ρ

According to the sign of the utility function u∗, we can decide the trading direction of each asset, i.e.,
long the positive and short the negative. Moreover, we can further assign the weights for each asset
as follows:

{
si ∈ TL if u∗ > 0,

si ∈ TS if u∗ < 0,

w(si) =


|u∗(si)|∑

sj∈TL
|u∗(sj)| if si ∈ TL,

|u∗(si)|∑
sj∈TS

|u∗(sj)| if si ∈ TS ,

0 otherwise,

4.2.2 Experiment 1

The steps to realize this trading strategy is as follows:

1. Calculate the preference functions ρ(si, sj)(t) for all pairs (si, sj). Here, we take the negative
standardized spread between pairs as the preference function, i.e.:

ρ(si, sj)
(t) = −

c
(t)
i,j − µ

(t)
i,j

σ
(t)
i,j

where c(t)i,j is the price spread between securities si and sj at timestamp t, and the parameters µ(t)
i,j and

σ
(t)
i,j are the mean and the standard deviation of the price spread c

(t)
i,j , respectively. The price spread

between securities si and sj at particular timestamp t is defined as:

c
(t)
i,j = log

(
p
(t)
i

p
(t)
j

)

where p
(t)
i and p

(t)
j denote historical prices of securities si and sj at the time t respectively. This

corresponds to the commonly used log-return between these two prices – due to the logarithm the
spreads are centered around zero and symmetric. In [?], the price spread is calculated as the log ratio
of normalized price series. However, we normalize the deviation from the expected price spread,
not the prices. This modification ensures that the preference functions of different security pairs are
comparable, alleviating the problem of choosing the thresholding parameter κ.

The parameters µ(t)
i,j and σ

(t)
i,j are estimated on a lookback period [t−T, t] using an unbiased estimator:

µ
(t)
i,j =

1

T − 1

t−1∑
τ=t−T

c
(τ)
i,j

σ
(t)
i,j =

√√√√ 1

T − 2

t−1∑
τ=t−T

(c
(τ)
i,j − µ

(t)
i,j)

2

2. Calculate the utility function of each asset from the previous optimization program.

12

3. Construct the portfolios using the weight allocation scheme.

We calculate the optimized weight every 1 minute using data from the previous 60 minutes, and the
backtest performance is as follows:

Figure 9: Backtest Result of Experiment 1

Although the pnl of this strategy is upward sloping, the transaction cost of this strategy is much higher
than the pnl, resulting in a deeply negative net pnl. This implies that although this strategy is able to
caputure the correct arbitrage direction, its profit capability is not able to cover the high transaction
costs of this high frequency trading. This suggests that we should further optimize the trading signal
and lower the trading frequency to reduce transaction costs.

4.2.3 Experiment 2: Lower Trading Frequency

In order to lower trading frequency, we set the portfolio rebalancing period to a longer time frame,
and set the new target position as the mean of the minute-level target position over the longer time
frame. Moreover, we tested the effects of different estimation window for the preference function
as well. After multiple experiments, we discovered that 3 hours is the best rebalancing period, and
the optimal look-back window is 360 minutes. The backtest result of the optimized portfolio is as
follows:

13

Figure 10: Backtest Result of Experiment 2

In this case, although the transaction cost has been sharply decreased, it is still higher than the pnl,
yielding a negative pnl. Therefore, it is critical to further optimize the profitability of this strategy.

4.2.4 Experiment 3: Discard Insignificant Preference Relationship

In order to optimize trading signal, we reflect on the preference relationship. Recall that we regard
the negative standardized spread between pairs as the preference function. For instance, when
the standardized spread between si and sj is 1.69, their preference function value is -1.69. This
implies that the spread between si and sj is abnormally high, hence we should short si and long
sj . However, when looking back at the data, we discovered that the preference function value is
very small. This suggests that the spread between si and sj is falling at normal intervals, hence no
significant preference relationship exists between si and sj . Hence, we decided to recalculate the
preference function rho as follows:

ρ′(si, sj)
(t)

{
ρ(si, sj)

(t) if |ρ(si, sj)(t)| > 1

0 if |ρ(si, sj)(t)| <= 1,

After this adjustment, we backtested this strategy on different sets of parameters. We discovered
that 2 hours is the best rebalancing period, and the optimal look-back window is 120 minutes. The
backtest result is as follows:

14

Figure 11: Backtest Result of Experiment 3

In this case, the transaction cost is controlled to an acceptable range, and we finally yield a positive
net pnl. This implies that this regularization on the preference function significantly improves the
efficiency of detecting arbitrage opportunities.

In summary, the statistics of the three above mentioned strategies are as follows:

Table 5: Statistics for trading strategies
Category Total Trades Annualized Return Sharpe Ratio max drawdown

Experiment 1 1563414 -2267.62% - 7054.75%
Experiment 2 8647 -24.97% - 128.45%
Experiment 3 5676 303.13% 1.29 59.87%

5 Conclusion

In this project, we successfully confirmed the existence of cointegration relationship among the
selected cryptocurrencies by Engle-Granger test and Johansen test. Based on this discovery, we
designed two trading strategies to capture arbitrage opportunities. For the first strategy, we construct
mean-reverting portfolio based on cointegration relation, and design trading signal by estimating the
mean and standard deviation of the spread between multiple cryptocurrency assets. By applying grid
search, we optimized a threshold to build a portfolio that grew 14 times in three years. For the second
strategy, we estimated the ranked utility of each asset based on spreads between pairs, and assigned
weights accordingly. Although this strategy initially suffers from high transaction cost, we overcame
this challenge by lowering trading frequency and regularizing the preference function between assets,
achieving a sharpe ratio of 1.29.

6 Group member contributions
• Yingyao Liu: Implemented Strategy 2 (Section 4.2)

15

• Feixue Ouyang: Implemented Strategy 1 (Section 4.1), Engle-Granger Test(Section 3.1)
• Xiaoling Huang: Implemented Engle-Granger Test, Johansen Test(Section 3), Introduction

& abstract
• Shijie Shao: Implemented Data preparation(Section 2), Johansen Test(Section 3.2), Strategy

1 (Section 4.1)

16

References

[1] Giancarlo Giudici, Alistair Milne, and Dmitri Vinogradov. Cryptocurrencies: market analysis
and perspectives. Journal of Industrial and Business Economics, 47:1–18, 2020.

[2] Stephen Chan, Jeffrey Chu, Saralees Nadarajah, and Joerg Osterrieder. A statistical analysis of
cryptocurrencies. Journal of Risk and Financial Management, 10(2):12, 2017.

[3] Jamie Kang and Tim Leung. Asynchronous adrs: overnight vs intraday returns and trading
strategies. Studies in Economics and Finance, 34(4):580–596, 2017.

[4] Tim Leung and Hung Nguyen. Constructing cointegrated cryptocurrency portfolios for statistical
arbitrage. Studies in Economics and Finance, 36(3):581–599, 2019.

[5] Igor Makarov and Antoinette Schoar. Trading and arbitrage in cryptocurrency markets. Journal
of Financial Economics, 135(2):293–319, 2020.

[6] Robert F Engle and Clive WJ Granger. Co-integration and error correction: representation,
estimation, and testing. Econometrica: journal of the Econometric Society, pages 251–276,
1987.

[7] David A Dickey and Wayne A Fuller. Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American statistical association, 74(366a):427–431, 1979.

[8] Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. Testing the null
hypothesis of stationarity against the alternative of a unit root: How sure are we that economic
time series have a unit root? Journal of econometrics, 54(1-3):159–178, 1992.

[9] Erik Hjalmarsson and Pär Österholm. Testing for cointegration using the johansen methodology
when variables are near-integrated. 2007.

[10] Stjepan Beguv, Andro Mer’cep, Zvonko Kostanjv, et al. Statistical arbitrage portfolio construc-
tion based on preference relations. Technical report, 2023.

17

A Appendix: Potential Method – Derivation and Implementation Details

Let {s1, . . . , sN} be an indexed set of N securities. The potential method defines a preference
function ρ∗ : S × S → R as the one for which there exists a utility u∗ which satisfies the condition:

ρ∗(si, sj) = u∗(si)− u∗(sj) ∀si, sj ∈ S, i < j. (A.1)

It is clear that the preference function ρ∗ needs to be asymmetric, i.e., ρ∗(si, sj) = −ρ∗(sj , si). This
implies that the preference function needs to be evaluated for

(
N
2

)
pairs (elements of S × S) rather

than N2 pairs. The Equation (A.1) can be written in matrix form as:

ρ∗ = Bu∗ (A.2)

where u∗ is the N × 1 vector of security utilities, ρ∗ is the
(
N
2

)
× 1 vector of pairwise preferences,

and B is the
(
N
2

)
×N graph incidence matrix.

If there is no utility vector u∗ for which the constraint (A.2) is satisfied given ρ, then the function ρ is
not a preference function and an approximation of ρ needs to be found for which (A.2) will hold for
some u∗. This task can be expressed as an optimization problem:

ρ∗ = arg min
ρ′∈P

d(ρ′, ρ) (A.4)

s.t. Bu∗ = ρ∗ (A.5)
N∑
i=0

u∗
i = 0 (A.6)

where P is the set of all preference vectors ρ∗ and d is a distance function. The constraint
∑N

i=0 u
∗
i =

0 is needed in order to obtain a unique solution, because a preference relation obtained from a utility
function is invariant to scaling, i.e., ∀si, sj ∈ S, ∀α ∈ R+, u∗(si) ≈ αu∗(si).

BTBu∗ = BT ρ (A.7)
N∑
i=0

u∗
i = 0. (A.8)

Equations (A.7) and (A.8) can be added together to get:

(BTB + JT)u∗ = BT ρ, (A.9)

where J is a matrix of ones with the same dimension as BTB. Finally solving (A.9) for u∗ results in:

u∗ = (BTB + J)−1BT ρ, (A.10)

which can be further simplified by employing the fact that BTB is the Laplacian of a complete graph
which implies that term (BTB + J)−1 = 1

N I . Thus the final solution to the Equation (A.9) is:

u∗ =
1

N
BT ρ. (A.11)

The preference vector ρ∗ can be calculated by simply plugging u∗ back into Equation (A.2):

ρ∗ = Bu∗. (A.12)

18

A Appendix: codes for strategy 1

import statsmodels.api as sm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import glob
from tqdm import tqdm
from sklearn.linear_model import LinearRegression

column_names = ["Open␣time", "Open", "High", "Low", "Close", "Volume",
"Close␣time", "Quote␣asset␣volume", "Number␣of␣trades",
"Taker␣buy␣base␣asset␣volume", "Taker␣buy␣quote␣asset␣volume", "Ignore"]

def aggregate_file(name , cutoff_date=None):
directory_path = os.path.join(os.getcwd(), ’data’, name)
file_paths = glob.glob(os.path.join(directory_path , ’*.csv’))

column_names
dataframes = [pd.read_csv(file_path , header=None , names=column_names) for file_path in file_paths]

aggregate = pd.concat(dataframes , ignore_index=True)
aggregate[’Open␣time’] = pd.to_datetime(aggregate[’Open␣time’], unit=’ms’)

cutoff_date
if cutoff_date is not None:

cutoff_datetime = pd.to_datetime(cutoff_date)
aggregate = aggregate[aggregate[’Open␣time’] < cutoff_datetime]

aggregate = aggregate.sort_values(by=’Open␣time’). reset_index(drop=True)
return aggregate

def calculate_vwap(data):
Calculate the typical price for each row
data[’Typical_Price ’] = (data[’High’] + data[’Low’] + data[’Close’]) / 3

Calculate the product of the typical price and the volume
data[’TP_Volume ’] = data[’Typical_Price ’] * data[’Volume ’]

Calculate the cumulative TP_Volume and cumulative Volume
data[’Cum_TP_Volume ’] = data[’TP_Volume ’]. cumsum ()
data[’Cum_Volume ’] = data[’Volume ’]. cumsum ()

Calculate the VWAP
data[’VWAP’] = data[’Cum_TP_Volume ’] / data[’Cum_Volume ’]

Drop the intermediate columns used for calculation
data.drop([’Typical_Price ’, ’TP_Volume ’, ’Cum_TP_Volume ’, ’Cum_Volume ’], axis=1, inplace=True)

return data

cut_off = ’2021-06-01’
#
BTC = aggregate_file(’BTC ’,cut_off)
LTC = aggregate_file(’LTC ’,cut_off)
BCH = aggregate_file(’BCH ’,cut_off)
ETH = aggregate_file(’ETH ’,cut_off)

BTC = aggregate_file(’BTC’)
LTC = aggregate_file(’LTC’)
BCH = aggregate_file(’BCH’)
ETH = aggregate_file(’ETH’)

19

BTC = calculate_vwap(BTC)
ETH = calculate_vwap(ETH)
LTC = calculate_vwap(LTC)
BCH = calculate_vwap(BCH)

BTC[’Open_diff_1 ’] = BTC[’Open’].diff()
LTC[’Open_diff_1 ’] = LTC[’Open’].diff()
ETH[’Open_diff_1 ’] = ETH[’Open’].diff()
BCH[’Open_diff_1 ’] = BCH[’Open’].diff()

X = pd.concat ([LTC[’Open_diff_1 ’],ETH[’Open_diff_1 ’],BCH[’Open_diff_1 ’]],axis =1). dropna ()
X.columns = [’LTC’, ’ETH’, ’BCH’]
Y = BTC[’Open_diff_1 ’]. dropna ()
X = sm.add_constant(X)

model = sm.OLS(Y, X)
results = model.fit()
LTC_coef = results.params[’LTC’]
ETH_coef = results.params[’ETH’]
BCH_coef = results.params[’BCH’]

spread = pd.DataFrame ()
spread[’Spread ’] = - ETH_coef*ETH[’Open’] - BCH_coef*BCH[’Open’] - LTC_coef*LTC[’Open’] + BTC[’Open’]

spread = pd.concat ([BTC[’Open␣time’],spread],axis =1). dropna ()
spread.columns = [’Open␣time’,’Spread ’]
spread = spread.set_index(’Open␣time’)

mean_value = spread[’Spread ’].mean()
std_dev = spread[’Spread ’].std()

def calculate_cointegration(Y, X):
NaN
if np.any(np.isnan(Y)) or np.any(np.isnan(X)):

print("Warning:␣NaN␣values␣found␣in␣the␣data.")
return False , {}

if np.any(np.isinf(Y)) or np.any(np.isinf(X)):
print("Warning:␣Inf␣values␣found␣in␣the␣data.")
return False , {}

#
try:

reg = LinearRegression (). fit(X, Y)
params = {’const’: reg.intercept_ , ’coeffs ’: reg.coef_}
return True , params

except Exception as e:
print(f"Error␣during␣regression:␣{e}")
return False , {}

#
def generate_trade_signals(crypto_dfs , min_window =300, step=60, multiply =1.0):

all_data = pd.concat(
[crypto_dfs[’BTC’][’Open’], crypto_dfs[’ETH’][’Open’], crypto_dfs[’LTC’][’Open’], crypto_dfs[’BCH’][’Open’]],
axis =1)

all_data.columns = [’BTC’, ’ETH’, ’LTC’, ’BCH’]
all_data_diff = all_data.diff (). dropna () #

DataFrame
signals_df = pd.DataFrame(index=all_data.index[min_window :])
signals_df[’signal ’] = 0
signals_df[’Spread ’] = np.nan
signals_df[’ETH_coef ’] = np.nan
signals_df[’BCH_coef ’] = np.nan

20

signals_df[’LTC_coef ’] = np.nan

for end in tqdm(range(min_window , len(all_data) + 1, step)):
window_data = all_data_diff.iloc[:end]
Y = window_data[’BTC’]
X = window_data [[’LTC’, ’ETH’, ’BCH’]]

has_coint , params = calculate_cointegration(Y, X)
if has_coint:

coeffs = np.array([params[’coeffs ’][i] for i in range (3)])
Calculate spreads using original data
original_window_data = all_data.iloc[:end]

#
spreads = original_window_data [[’LTC’, ’ETH’, ’BCH’]]. dot(-coeffs) + original_window_data[’BTC’]
mean_spread = spreads.mean()
std_spread = spreads.std()

Apply the coefficients to the next step observations using original data
next_index_end = min(end + step , len(all_data))

#
next_data = all_data [[’LTC’, ’ETH’, ’BCH’]]. iloc[end:next_index_end].dot(-coeffs) + all_data[’BTC’].iloc[end:next_index_end]
signals_df.loc[next_data.index , ’Spread ’] = next_data
signals_df.loc[next_data.index , [’ETH_coef ’, ’BCH_coef ’, ’LTC_coef ’]] = coeffs

Generate trading signals
signals_df.loc[next_data.index , ’signal ’] = (

(next_data < mean_spread - multiply * std_spread). astype(int) -
(next_data > mean_spread + multiply * std_spread). astype(int)

)
return signals_df.dropna ()

def plot_backtest_results(trades_df , signals_df ,min_window ,step ,multiplier):
fig , (ax1 , ax2 , ax3 , ax4) = plt.subplots(4, 1, sharex=True , figsize =(14, 16))
Spread
spread_filter = spread.loc[spread.index.intersection(signals_df.index)]
ax1.plot(signals_df.index , signals_df[’Spread ’], label=’Spread ’,color=’blue’)
ax1.plot(spread_filter.index , spread_filter[’Spread ’], label=’Full -Sample␣Spread ’, color=’black’)
ax1.axhline(y=mean_value , color=’purple ’, linestyle=’--’, label=’Full -Sample␣Mean’)
ax1.axhline(y=mean_value - std_dev * multiplier , color=’g’, linestyle=’--’, label=’Lower -Upper␣Bounds ’)
ax1.axhline(y=mean_value + std_dev * multiplier , color=’g’, linestyle=’--’)
signal == 1
buy_signals = signals_df[signals_df[’signal ’] == 1]
ax1.scatter(buy_signals.index , buy_signals[’Spread ’], color=’red’, label=’Buy␣Signal ’, marker=’^’, s=100)

signal == -1
sell_signals = signals_df[signals_df[’signal ’] == -1]
ax1.scatter(sell_signals.index , sell_signals[’Spread ’], color=’green ’, label=’Sell␣Signal ’, marker=’v’, s=100)
ax1.set_title(’Spread␣and␣Signals ’)
ax1.legend ()

ax2.plot(trades_df.index , trades_df[’value’], label=’Net␣Pnl’, color=’green’)
ax2.plot(trades_df.index , trades_df[’net_value ’], label=’Pnl’, color=’blue’)
ax2.set_title(f’Pnl␣with␣Parameters:␣min_window ={ min_window},␣step={step},␣multiplier ={ multiplier}’)
ax2.legend ()

trades_df[’running_max ’] = np.maximum.accumulate(trades_df[’value’])
trades_df[’drawdown ’] = trades_df[’value’] - trades_df[’running_max ’]
diff = trades_df.index.to_series (). diff()
breaks = diff > pd.Timedelta(’1min’)
segments = breaks.cumsum ()

#
for segment in segments.unique ():

21

segment_df = trades_df[segments == segment]
ax3.fill_between(segment_df.index , 0, segment_df[’drawdown ’], step=’pre’, alpha =0.5)

ax4.plot(trades_df.index , trades_df[’transaction_cost ’], label=’transaction_cost ’, color=’orange ’)
X
plt.xticks(rotation =45)
plt.tight_layout ()
name = ’window␣method␣with␣multiplier ’ + str(multiplier) + ’step’ + str(step) + ’.jpeg’
plt.savefig(name , dpi =300)
plt.show()

return trades_df[’drawdown ’].min()

def backtest(crypto_dfs , spread_signals):
spread_signals = spread_signals.dropna ()
crypto_dfs = {key: df.loc[df.index.intersection(spread_signals.index)] for key , df in crypto_dfs.items ()}

transaction_costs = (abs(ETH_coef * crypto_dfs[’ETH’][’VWAP’]) +
abs(BCH_coef * crypto_dfs[’BCH’][’VWAP’]) +
abs(LTC_coef * crypto_dfs[’LTC’][’VWAP’]) +
abs(crypto_dfs[’BTC’][’VWAP’])) * 0.0001

trades_df = pd.DataFrame(index=spread_signals.index)
trades_df[’position ’] = 0.0
trades_df[’cash’] = 10000.0
trades_df[’transaction_cost ’] = 0.0 #
trades_df[’value ’] = 10000.0
trade_results = []
current_position = 0
cumulative_cost = 0 #

for i in tqdm(range(1, len(spread_signals))):
signal = spread_signals[’signal ’].iloc[i]
market_value = spread_signals[’Spread ’].iloc[i]
transaction_cost = transaction_costs.iloc[i]
units = 1
if current_position == 0 and signal != 0:

#
units = max(int(trades_df[’cash’].iloc[i - 1] / (abs(market_value + transaction_cost))), 1)
current_position = signal
position_value = market_value * units * signal
trades_df.at[spread_signals.index[i], ’position ’] = position_value
open_position_value = position_value
open_transaction_cost = transaction_cost * units
cumulative_cost += open_transaction_cost
trades_df.at[spread_signals.index[i], ’cash’] = trades_df.at[spread_signals.index[i - 1], ’cash’] - position_value - transaction_cost * units

elif current_position * signal == -1:
#
end_transaction_cost = transaction_cost * units
cumulative_cost += end_transaction_cost
trades_df.at[spread_signals.index[i], ’cash’] = trades_df.at[spread_signals.index[i - 1], ’cash’] + market_value * current_position * units - transaction_cost * units
end_position_value = market_value * current_position * units
trade_result = end_position_value - open_position_value - open_transaction_cost - end_transaction_cost
trade_results.append(trade_result)
trades_df.at[spread_signals.index[i], ’position ’] = 0
current_position = 0

else:
#
if current_position != 0:

trades_df.at[spread_signals.index[i], ’position ’] = market_value * current_position * units
trades_df.at[spread_signals.index[i], ’cash’] = trades_df.at[spread_signals.index[i - 1], ’cash’]

#
trades_df.at[spread_signals.index[i], ’transaction_cost ’] = cumulative_cost

22

trades_df.at[spread_signals.index[i], ’value’] = trades_df.at[spread_signals.index[i], ’cash’] + \
trades_df.at[spread_signals.index[i], ’position ’]

trades_df[’net_value ’] = trades_df[’value’] + trades_df[’transaction_cost ’]
daily_values = trades_df[’value’]. resample(’D’).last()
daily_returns = daily_values.pct_change (). dropna ()

#
mean_daily_returns = daily_returns.mean()
std_dev_daily_returns = daily_returns.std()

2 %
annual_risk_free_rate = 0.02
daily_risk_free_rate = (1 + annual_risk_free_rate) ** (1 / 365) - 1

Sharpe
sharpe_ratio = (mean_daily_returns - daily_risk_free_rate) / std_dev_daily_returns * np.sqrt (365)

#
profits = [result for result in trade_results if result > 0]
losses = [result for result in trade_results if result < 0]
highest_value = max(trades_df[’value ’])
lowest_value = min(trades_df[’value’])
final_net_value = trades_df[’value ’].iloc[-1]
max_profit = max(profits) if profits else 0
max_loss = min(losses) if losses else 0

metrics = [
len(trade_results),
len(profits) / len(trade_results) * 100 if trade_results else 0,
len(losses) / len(trade_results) * 100 if trade_results else 0,
sum(profits) / len(profits) if profits else 0,
sum(losses) / len(losses) if losses else 0,
highest_value ,
lowest_value ,
final_net_value ,
max_profit ,
max_loss ,
sharpe_ratio

]

return trades_df , metrics

crypto_dfs = {
’BTC’: BTC.set_index(’Open␣time’),
’ETH’: ETH.set_index(’Open␣time’),
’LTC’: LTC.set_index(’Open␣time’),
’BCH’: BCH.set_index(’Open␣time’)

}

window43200 ,step 1440
with open(’trades␣information␣test.txt’, ’w’) as f:

header = "{:<12}␣{: <13}␣{: <12}␣{:<12}␣{: <12}␣{:<12}␣{:<15}␣{: <15}␣{:<16}␣{:<11}␣{: <10}␣{:<12}␣{:<12}".format(
"Multiplier", "Total␣Trades", "Win␣Rate␣(%)", "Loss␣Rate␣(%)", "Average␣Win", "Average␣Loss",
"Highest␣Value", "Lowest␣Value", "Final␣Net␣Value", "Max␣Profit", "Max␣Loss", "Sharpe␣Ratio", "Drawdown"

)
f.write(header + ’\n’)

c
c = [0.5 ,0.7 ,1 ,1.3 ,1.5]
for multiplier in c:

#
trade_signals = generate_trade_signals(crypto_dfs , min_window =43200 , step =1440 , multiply=multiplier)

#

23

backtest_results , metrics = backtest(crypto_dfs , trade_signals)

#
drawdown = plot_backtest_results(backtest_results , trade_signals , 43200, 1440, multiplier)

#
data_string = "{: <12}␣{:<15}␣{:<15f}␣{:<15f}␣{:<15f}␣{:<15f}␣{:<16f}␣{:<16f}␣{:<17f}␣{:<13f}␣{:<12f}␣{:<13f}␣{:<13f}".format(

multiplier , metrics [0], metrics [1], metrics [2], metrics [3], metrics [4], metrics [5], metrics [6],
metrics [7], metrics [8], metrics [9], metrics [10], -drawdown

)

#
f.write(data_string + ’\n’)

24

A Appendix: codes for strategy 2

%%
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from itertools import product

import statsmodels.api as sm
import os
import glob
from tqdm import tqdm

%%
column_names = ["Open␣time", "Open", "High", "Low", "Close", "Volume",

"Close␣time", "Quote␣asset␣volume", "Number␣of␣trades",
"Taker␣buy␣base␣asset␣volume", "Taker␣buy␣quote␣asset␣volume", "Ignore"]

def calculate_vwap(data):
Calculate the typical price for each row
data[’Typical_Price ’] = (data[’High’] + data[’Low’] + data[’Close’]) / 3

Calculate the product of the typical price and the volume
data[’TP_Volume ’] = data[’Typical_Price ’] * data[’Volume ’]

Calculate the cumulative TP_Volume and cumulative Volume
data[’Cum_TP_Volume ’] = data[’TP_Volume ’]. cumsum ()
data[’Cum_Volume ’] = data[’Volume ’]. cumsum ()

Calculate the VWAP
data[’vwap’] = data[’Cum_TP_Volume ’] / data[’Cum_Volume ’]

Drop the intermediate columns used for calculation
data.drop([’Typical_Price ’, ’TP_Volume ’, ’Cum_TP_Volume ’, ’Cum_Volume ’], axis=1, inplace=True)

return data

def data_preparation(name):
file_paths = glob.glob(f’../ data/futures /{name}USDT/1m/*.csv’)
dataframes = [pd.read_csv(file_path , header=None , names=column_names) for file_path in file_paths]
aggregate = pd.concat(dataframes)
aggregate.drop(aggregate.index[0], inplace=True)
aggregate [[’Open␣time’, ’Close␣time’]] = aggregate [[’Open␣time’, ’Close␣time’]]. astype(’int’)
aggregate[’Open␣time’] = aggregate[’Open␣time’].apply(lambda x: datetime.utcfromtimestamp(x / 1000))
aggregate[’Close␣time’] = aggregate[’Close␣time’].apply(lambda x: datetime.utcfromtimestamp(x / 1000))
aggregate.set_index(’Open␣time’,inplace=True)
aggregate [["Open", "High", "Low", "Close", "Volume",

"Quote␣asset␣volume", "Number␣of␣trades",
"Taker␣buy␣base␣asset␣volume", "Taker␣buy␣quote␣asset␣volume", "Ignore"]] = aggregate [["Open", "High", "Low", "Close", "Volume",
"Quote␣asset␣volume", "Number␣of␣trades",
"Taker␣buy␣base␣asset␣volume", "Taker␣buy␣quote␣asset␣volume", "Ignore"]]. astype(’float’)

df = calculate_vwap(aggregate)
df.sort_index(inplace=True)

return df

BTC = data_preparation(’BTC’)
LTC = data_preparation(’LTC’)
BCH = data_preparation(’BCH’)
ETH = data_preparation(’ETH’)

%%
BTC

25

%%
B = np.array ([[1,-1,0,0],

[1,0,-1,0],
[1,0,0,-1],
[0,1,-1,0],
[0,1,0,-1],
[0,0,1,-1]]
)

BTC0 = BTC
LTC0 = LTC
BCH0 = BCH
ETH0 = ETH

%%
calculate preference function rho
def rho(row):

return -(row[’spread ’]-row[’mean’])/ row[’std’]

calculate target weight based on the utility for each asset
def calc_weight(row):

long , short = {}, {}
if row[’BTC’] > 0:

long[’BTC’] = row[’BTC’]
elif row[’BTC’] < 0:

short[’BTC’] = row[’BTC’]

if row[’LTC’] > 0:
long[’LTC’] = row[’LTC’]

elif row[’LTC’] < 0:
short[’LTC’] = row[’LTC’]

if row[’BCH’] > 0:
long[’BCH’] = row[’BCH’]

elif row[’BCH’] < 0:
short[’BCH’] = row[’BCH’]

if row[’ETH’] > 0:
long[’ETH’] = row[’ETH’]

elif row[’ETH’] < 0:
short[’ETH’] = row[’ETH’]

weights = {}
long_sum = np.sum(list(long.values ()))
short_sum = -np.sum(list(short.values ()))
for i in long.keys ():

weights[i] = long[i]/ long_sum
for i in short.keys ():

weights[i] = short[i]/ short_sum

order = ["BTC","LTC", "BCH", "ETH"]
weights = {k: weights[k] for k in order if k in weights}

return weights

def recalc_rho(arr):
return 1/4* B@B.T@arr

u = 1/4*B.T*rho
rho2 = B*u

%%
def aggregate_kline(df , interval):

new_df = pd.DataFrame ()
new_df[’Open’] = df[’Open’]. resample(interval).first()

26

new_df[’High’] = df[’High’]. resample(interval).max()
new_df[’Low’] = df[’Low’]. resample(interval).min()
new_df[’Close’] = df[’Close’]. resample(interval).last()

return new_df

%%
windows = [120 ,180 ,240 ,360]
intervals = [’1h’,’2h’,’3h’]
BTC = BTC0
LTC = LTC0
BCH = BCH0
ETH = ETH0

def backtest_v1(n):
BTC_LTC = np.log(BTC[’Open’]/LTC[’Open’])
BTC_LTC.name = ’spread ’
BTC_LTC = pd.DataFrame(BTC_LTC)
BTC_LTC[’mean’] = BTC_LTC[’spread ’]. rolling(n).mean()
BTC_LTC[’std’] = BTC_LTC[’spread ’]. rolling(n).std()

BTC_BCH = np.log(BTC[’Open’]/BCH[’Open’])
BTC_BCH.name = ’spread ’
BTC_BCH = pd.DataFrame(BTC_BCH)
BTC_BCH[’mean’] = BTC_BCH[’spread ’]. rolling(n).mean()
BTC_BCH[’std’] = BTC_BCH[’spread ’]. rolling(n).std()

BTC_ETH = np.log(BTC[’Open’]/ETH[’Open’])
BTC_ETH.name = ’spread ’
BTC_ETH = pd.DataFrame(BTC_ETH)
BTC_ETH[’mean’] = BTC_ETH[’spread ’]. rolling(n).mean()
BTC_ETH[’std’] = BTC_ETH[’spread ’]. rolling(n).std()

LTC_BCH = np.log(LTC[’Open’]/BCH[’Open’])
LTC_BCH.name = ’spread ’
LTC_BCH = pd.DataFrame(LTC_BCH)
LTC_BCH[’mean’] = LTC_BCH[’spread ’]. rolling(n).mean()
LTC_BCH[’std’] = LTC_BCH[’spread ’]. rolling(n).std()

LTC_ETH = np.log(LTC[’Open’]/ETH[’Open’])
LTC_ETH.name = ’spread ’
LTC_ETH = pd.DataFrame(LTC_ETH)
LTC_ETH[’mean’] = LTC_ETH[’spread ’]. rolling(n).mean()
LTC_ETH[’std’] = LTC_ETH[’spread ’]. rolling(n).std()

BCH_ETH = np.log(BCH[’Open’]/ETH[’Open’])
BCH_ETH.name = ’spread ’
BCH_ETH = pd.DataFrame(BCH_ETH)
BCH_ETH[’mean’] = BCH_ETH[’spread ’]. rolling(n).mean()
BCH_ETH[’std’] = BCH_ETH[’spread ’]. rolling(n).std()

establish initial preference function
rho_df = pd.DataFrame ()
rho_df[’BTC_LTC ’] = BTC_LTC.apply(lambda row: rho(row), axis =1)
rho_df[’BTC_BCH ’] = BTC_BCH.apply(lambda row: rho(row), axis =1)
rho_df[’BTC_ETH ’] = BTC_ETH.apply(lambda row: rho(row), axis =1)
rho_df[’LTC_BCH ’] = LTC_BCH.apply(lambda row: rho(row), axis =1)
rho_df[’LTC_ETH ’] = LTC_ETH.apply(lambda row: rho(row), axis =1)
rho_df[’BCH_ETH ’] = BCH_ETH.apply(lambda row: rho(row), axis =1)
rho_df.dropna(inplace=True)

estimate utility weight for each asset
utility = pd.DataFrame (1/4*(B.T@rho_df.values.T).T,columns =["BTC","LTC", "BCH", "ETH"],index=rho_df.index)

estimate target weight

27

weight = pd.DataFrame(utility.apply(lambda row: calc_weight(row), axis =1). to_list ())
weight.index = utility.index

get trading price
price = pd.DataFrame ()
price[’BTC’] = BTC[’Close’]
price[’LTC’] = LTC[’Close’]
price[’BCH’] = BCH[’Close’]
price[’ETH’] = ETH[’Close’]

calculate target position for each asset
total = 100000
target_pos = total*weight /(price.dropna ()). shift()
target_pos.dropna(inplace=True)

calculate pnl
delta_pos = target_pos.diff()
delta_pos.iloc [0] = target_pos.iloc [0]
portfolio_value = (target_pos*price).sum(axis =1)
transaction_value = -(delta_pos*price).sum(axis =1)
pnl = portfolio_value+transaction_value.cumsum ()
cost = (delta_pos.abs ()* price *0.0001). sum(axis =1)
net_pnl = pnl -cost.cumsum ()

summary_df = pd.DataFrame ()
summary_df[’cost’] = cost.cumsum ()
summary_df[’pnl’] = pnl
summary_df[’net_pnl ’] = net_pnl

return summary_df

def backtest_v2(n, interval):
BTC_LTC = np.log(BTC[’Open’]/LTC[’Open’])
BTC_LTC.name = ’spread ’
BTC_LTC = pd.DataFrame(BTC_LTC)
BTC_LTC[’mean’] = BTC_LTC[’spread ’]. rolling(n).mean()
BTC_LTC[’std’] = BTC_LTC[’spread ’]. rolling(n).std()

BTC_BCH = np.log(BTC[’Open’]/BCH[’Open’])
BTC_BCH.name = ’spread ’
BTC_BCH = pd.DataFrame(BTC_BCH)
BTC_BCH[’mean’] = BTC_BCH[’spread ’]. rolling(n).mean()
BTC_BCH[’std’] = BTC_BCH[’spread ’]. rolling(n).std()

BTC_ETH = np.log(BTC[’Open’]/ETH[’Open’])
BTC_ETH.name = ’spread ’
BTC_ETH = pd.DataFrame(BTC_ETH)
BTC_ETH[’mean’] = BTC_ETH[’spread ’]. rolling(n).mean()
BTC_ETH[’std’] = BTC_ETH[’spread ’]. rolling(n).std()

LTC_BCH = np.log(LTC[’Open’]/BCH[’Open’])
LTC_BCH.name = ’spread ’
LTC_BCH = pd.DataFrame(LTC_BCH)
LTC_BCH[’mean’] = LTC_BCH[’spread ’]. rolling(n).mean()
LTC_BCH[’std’] = LTC_BCH[’spread ’]. rolling(n).std()

LTC_ETH = np.log(LTC[’Open’]/ETH[’Open’])
LTC_ETH.name = ’spread ’
LTC_ETH = pd.DataFrame(LTC_ETH)
LTC_ETH[’mean’] = LTC_ETH[’spread ’]. rolling(n).mean()
LTC_ETH[’std’] = LTC_ETH[’spread ’]. rolling(n).std()

BCH_ETH = np.log(BCH[’Open’]/ETH[’Open’])
BCH_ETH.name = ’spread ’
BCH_ETH = pd.DataFrame(BCH_ETH)

28

BCH_ETH[’mean’] = BCH_ETH[’spread ’]. rolling(n).mean()
BCH_ETH[’std’] = BCH_ETH[’spread ’]. rolling(n).std()

establish initial preference function
rho_df = pd.DataFrame ()
rho_df[’BTC_LTC ’] = BTC_LTC.apply(lambda row: rho(row), axis =1)
rho_df[’BTC_BCH ’] = BTC_BCH.apply(lambda row: rho(row), axis =1)
rho_df[’BTC_ETH ’] = BTC_ETH.apply(lambda row: rho(row), axis =1)
rho_df[’LTC_BCH ’] = LTC_BCH.apply(lambda row: rho(row), axis =1)
rho_df[’LTC_ETH ’] = LTC_ETH.apply(lambda row: rho(row), axis =1)
rho_df[’BCH_ETH ’] = BCH_ETH.apply(lambda row: rho(row), axis =1)
rho_df.dropna(inplace=True)

estimate utility weight for each asset
utility = pd.DataFrame (1/4*(B.T@rho_df.values.T).T,columns =["BTC","LTC", "BCH", "ETH"],index=rho_df.index)

estimate target weight
weight = pd.DataFrame(utility.apply(lambda row: calc_weight(row), axis =1). to_list ())
weight.index = utility.index

get trading price
price = pd.DataFrame ()
price[’BTC’] = BTC[’Close’]
price[’LTC’] = LTC[’Close’]
price[’BCH’] = BCH[’Close’]
price[’ETH’] = ETH[’Close’]
price = price.resample(interval).last()

calculate target position for each asset
total = 100000
target_pos = total*weight /(price.dropna ()). shift()
target_pos.dropna(inplace=True)
target_pos = target_pos.resample(interval).mean (). round ()

calculate pnl
delta_pos = target_pos.diff()
delta_pos.iloc [0] = target_pos.iloc [0]
portfolio_value = (target_pos*price).sum(axis =1)
transaction_value = -(delta_pos*price).sum(axis =1)
pnl = portfolio_value+transaction_value.cumsum ()
cost = (delta_pos.abs ()* price *0.0001). sum(axis =1)
net_pnl = pnl -cost.cumsum ()

summary_df = pd.DataFrame ()
summary_df[’cost’] = cost.cumsum ()
summary_df[’pnl’] = pnl
summary_df[’net_pnl ’] = net_pnl

return summary_df

def backtest_v3(n, interval):
BTC_LTC = np.log(BTC[’Open’]/LTC[’Open’])
BTC_LTC.name = ’spread ’
BTC_LTC = pd.DataFrame(BTC_LTC)
BTC_LTC[’mean’] = BTC_LTC[’spread ’]. rolling(n).mean()
BTC_LTC[’std’] = BTC_LTC[’spread ’]. rolling(n).std()

BTC_BCH = np.log(BTC[’Open’]/BCH[’Open’])
BTC_BCH.name = ’spread ’
BTC_BCH = pd.DataFrame(BTC_BCH)
BTC_BCH[’mean’] = BTC_BCH[’spread ’]. rolling(n).mean()
BTC_BCH[’std’] = BTC_BCH[’spread ’]. rolling(n).std()

BTC_ETH = np.log(BTC[’Open’]/ETH[’Open’])
BTC_ETH.name = ’spread ’

29

BTC_ETH = pd.DataFrame(BTC_ETH)
BTC_ETH[’mean’] = BTC_ETH[’spread ’]. rolling(n).mean()
BTC_ETH[’std’] = BTC_ETH[’spread ’]. rolling(n).std()

LTC_BCH = np.log(LTC[’Open’]/BCH[’Open’])
LTC_BCH.name = ’spread ’
LTC_BCH = pd.DataFrame(LTC_BCH)
LTC_BCH[’mean’] = LTC_BCH[’spread ’]. rolling(n).mean()
LTC_BCH[’std’] = LTC_BCH[’spread ’]. rolling(n).std()

LTC_ETH = np.log(LTC[’Open’]/ETH[’Open’])
LTC_ETH.name = ’spread ’
LTC_ETH = pd.DataFrame(LTC_ETH)
LTC_ETH[’mean’] = LTC_ETH[’spread ’]. rolling(n).mean()
LTC_ETH[’std’] = LTC_ETH[’spread ’]. rolling(n).std()

BCH_ETH = np.log(BCH[’Open’]/ETH[’Open’])
BCH_ETH.name = ’spread ’
BCH_ETH = pd.DataFrame(BCH_ETH)
BCH_ETH[’mean’] = BCH_ETH[’spread ’]. rolling(n).mean()
BCH_ETH[’std’] = BCH_ETH[’spread ’]. rolling(n).std()

establish initial preference function
rho_df = pd.DataFrame ()
rho_df[’BTC_LTC ’] = BTC_LTC.apply(lambda row: rho(row), axis =1)
rho_df[’BTC_BCH ’] = BTC_BCH.apply(lambda row: rho(row), axis =1)
rho_df[’BTC_ETH ’] = BTC_ETH.apply(lambda row: rho(row), axis =1)
rho_df[’LTC_BCH ’] = LTC_BCH.apply(lambda row: rho(row), axis =1)
rho_df[’LTC_ETH ’] = LTC_ETH.apply(lambda row: rho(row), axis =1)
rho_df[’BCH_ETH ’] = BCH_ETH.apply(lambda row: rho(row), axis =1)
rho_df.dropna(inplace=True)
rho_df = rho_df.where(rho_df.abs()>=1,0)

estimate utility weight for each asset
utility = pd.DataFrame (1/4*(B.T@rho_df.values.T).T,columns =["BTC","LTC", "BCH", "ETH"],index=rho_df.index)

estimate target weight
weight = pd.DataFrame(utility.apply(lambda row: calc_weight(row), axis =1). to_list ())
weight.index = utility.index

get trading price
price = pd.DataFrame ()
price[’BTC’] = BTC[’Close’]
price[’LTC’] = LTC[’Close’]
price[’BCH’] = BCH[’Close’]
price[’ETH’] = ETH[’Close’]
price = price.resample(interval).last()

calculate target position for each asset
total = 100000
target_pos = total*weight /(price.dropna ()). shift()
target_pos.dropna(inplace=True)
target_pos = target_pos.resample(interval).mean (). round ()

calculate pnl
delta_pos = target_pos.diff()
delta_pos.iloc [0] = target_pos.iloc [0]
portfolio_value = (target_pos*price).sum(axis =1)
transaction_value = -(delta_pos*price).sum(axis =1)
pnl = portfolio_value+transaction_value.cumsum ()
cost = (delta_pos.abs ()* price *0.0001). sum(axis =1)
net_pnl = pnl -cost.cumsum ()

summary_df = pd.DataFrame ()
summary_df[’cost’] = cost.cumsum ()

30

summary_df[’pnl’] = pnl
summary_df[’net_pnl ’] = net_pnl

return summary_df

df1 = backtest_v1(n=60)
df2 = backtest_v2(n=360, interval="3h")
df3 = backtest_v3(n=120, interval="2h")

%%
def plot_backtest_results(df, version):

pnl_daily = df.resample(’d’).last()
high_level = pnl_daily[’net_pnl ’]. cummax ()
drawdown = pnl_daily[’net_pnl ’]-high_level
fig , (ax1 , ax2) = plt.subplots(2, 1, sharex=True , figsize =(7, 6))

plot pnl
ax1.plot(pnl_daily.index , pnl_daily[’pnl’], label=’pnl’)
ax1.plot(pnl_daily.index , pnl_daily[’net_pnl ’], label=’net␣pnl’)
ax1.plot(pnl_daily.index , pnl_daily[’cost’], label=’cost’)
ax1.set_title(’pnl’)
ax1.legend ()

plot drawdown
ax2.fill_between(drawdown.index , 0, drawdown , where=drawdown <= 0, step=’pre’, label=’Drawdown ’)
ax2.set_title(’drawdown ’)

plt.xticks(rotation =45)
plt.tight_layout ()
plt.savefig(f’./ backtest_result /{ version }.png’)
plt.show()

%%
plot_backtest_results(df1 , "v1")
plot_backtest_results(df2 , "v2")
plot_backtest_results(df3 , "v3")

%%
def calculate_statistics(df):

delta_cost = df[’cost’].diff()
trade_counts = len(delta_cost[delta_cost != 0])

df[’balance ’] = df[’net_pnl ’] + 100000
total_return = ((df[’balance ’].iloc [-1] -100000)/100000)*100
annual_return = total_return /3
daily_balance = df["balance"]. resample(’d’).last()

high_level = daily_balance.cummax ()
drawdown = daily_balance -high_level
ddpercent = drawdown/high_level *100
max_drawdown = -ddpercent.min()
if df[’balance ’].min() < 0:

sharpe = None
else:

pre_day_balance = daily_balance.shift (1)
daily_return = daily_balance.pct_change ()
daily_return_mean = daily_return.mean ()*100
daily_return_std = daily_return.std ()*100
sharpe = (daily_return_mean -0.02/365)/ daily_return_std*np.sqrt (365)

return {"total␣trades": trade_counts ,
"annual␣return": annual_return ,
"sharpe": sharpe ,

31

"max␣drawdown": max_drawdown}

print(calculate_statistics(df1))
print(calculate_statistics(df2))
print(calculate_statistics(df3))

32

	Introduction
	Data Preparation
	Data Collection
	Data Preprocess

	Cointegration Test and Analysis
	Engle-Granger Two-Step Method
	Johansen Method
	Portfolio Time series

	Statistical Arbitrage Strategies
	Trading the spread
	Strategy validation with full-sample
	Dynamic estimation of cointegration, mean and standard deviation

	Construct portfolio from preference relations
	Model Setup
	Experiment 1
	Experiment 2: Lower Trading Frequency
	Experiment 3: Discard Insignificant Preference Relationship

	Conclusion
	Group member contributions
	Appendix: Potential Method – Derivation and Implementation Details
	Appendix: codes for strategy 1
	Appendix: codes for strategy 2

