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Abstract

This study reproduces and critically evaluates the framework of Ban et al. (2018) [1]]
for incorporating machine-learning-based regularization into portfolio optimization.
We implement both mean-variance and CVaR performance-based regularization
methods and assess their out-of-sample performance on industry indices. To
calibrate the regularization parameter, we introduce a logarithmically spaced grid
search combined with k-fold cross-validation. The models are tested on a dataset
spanning 2010 to 2020. Our code can be accessed through GitHutﬂ

1 Introduction

Portfolio optimization is a cornerstone of quantitative finance: given p assets with (unknown) return
distribution, an investor seeks weights w € RP that balance expected return against risk. The classical
Mean—Variance [4] and its Mean—CVaR [5]] problems both replace the true moments by their empirical
counterparts and solve the resulting Sample Average Approximation (SAA). While SAA is consistent
as the number of observations n — oo, in realistic, limited-data settings often yields highly unstable
optima and disappointing out-of-sample performance [3].

In machine learning, regularization is routinely used to curb overfitting and improve robustness on
unseen data. Inspired by this, Performance-Based Regularization (PBR) is introduced for portfolio
optimization: adding constraints that limit the sample variance of the estimated portfolio risk (and
return) to guard against estimation noise.

Because the optimization problems of PBR models are nonconvex, Ban et al. (2018) propose several
convex relaxation approaches to make the model solvable. These relaxations preserve asymptotic
optimality and are closely connected to robust optimization frameworks.

In this project, we reproduce the key methods and results from their work, including implementing
PBR models, calibrating regularization thresholds, backtesting the out-of-sample performance-based
cross-validation scheme. We identify key failings of the original OOS-PBSD calibration and design a
log-spaced grid search algorithm(OOS-PBGS). Through extensive backtesting on daily industry-index
data, we validate the empirical improvements of PBR over standard sample-average approximation
(SAA) methods.

The rest of the paper is organized as follows. Section 2] presents the PBR models and their convex
approximations. Section [3] describes regularization calibration procedure. Section @] introduces
backesting setup and performance metrics. Section [5] provides backtesting results and discussion.
Section 6] gives a general summary of this study.
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2 Portfolio Optimization with PBR

2.1 Classical Formulations

We consider two canonical portfolio optimization objectives: mean-variance (MV) optimization in
the spirit of Markowitz, and mean—Conditional Value-at-Risk (CVaR) optimization. The formulations
below assume full knowledge of population-level moments or distribution.

The population mean-variance problem is given by:

wyy = arg min - w ' Yw
wERP

st. w1, =1,

w'pu =R, (MV-population)

where 1 and X denote the true mean vector and covariance matrix of excess returns X, and R is the
investor’s target return (which may be optionally enforced).

Similarly, the population mean—CVaR portfolio problem reads:
wey = arg min CVaR(—wTX; B)
weERP
s.t. lep =1,
w'p =R, (CV-population)
with

—wTX: B) = mi A omLTx ot
CVaR(-w'X; ) .glel]%{a+1_ﬁE[ w' X —a] },

as introduced by Rockafellar and Uryasev [5]], where 8 € (0.5, 1) is a confidence level.

2.2 Limitations of Sample Average Approximation (SAA)

In practice, population parameters p, 2, or the full distribution of returns are unknown. A common
workaround is the Sample Average Approximation (SAA), where these quantities are replaced by
their empirical estimates based on historical data {X;}? ;. This yields the following empirical
optimization problems:

Wy, My = arg min wTinw
weRP
st w'l, =1, (MV-SAA)

wTﬁn =R,

Wn,cv = argwmeiﬂg) (mn(*wTX;ﬂ)
st.ow'l, =1, (CV-SAA)
w—rﬁn - R,
where

— 1
—_ T R = 1 —_—
CVaR,(—w' X;p): gnelﬁ{aJrn(l—ﬁ)

(—wTXi — oz)+} .

i=1

While both @, mv — wmy and W, cv — wey hold in probability as n — oo, the SAA approach
is known to be statistically fragile under small sample sizes. In particular, prior studies (e.g., [3[])

show that limited observations can lead to highly unstable and overfitted solutions, especially in high
dimensions.

This motivates the development of Performance-Based Regularization (PBR), which introduces a
data-dependent penalty to control instability and improve out-of-sample generalization.



2.3 PBR for Mean—Variance Optimization

In the PBR approach, one starts from the SAA problem and adds an upper-bound constraint on the
sample variance of the portfolio variance:

Wy My = arg min wTE L W,
weRP

st. w1, =1,
(wTﬁn = R),
SVar(w'S,w) <U,  (MV-PBR)
where SVar(+) is the sample-variance operator, and Uy controls the degree of regularization.

Proposition 1 (Sample variance of the sample variance) The sample variance of the sample vari-
ance of the portfolio, SVar (wTZn w) is given by

p p p P
SVar TZ w E E g E w; wj Wi Wy Qijri,
i=1j=1k=1I=1

where
1

~ ~ orios 1 G 05
Qijr = ﬁ(ﬁu,m‘kz —050m) + m( 2 o)

ik 051 T 03 05,
Here [i4 ;i1 is the sample-average estimator of the fourth central moment
pagijit = E[(X — i) (X5 — p) (X — pe) (Ko — )],
and o 0 - is the sample-average estimator of the covariance
of; = E[(Xi — pa) (X5 — )]
2.3.1 Rank-1 Approximation of MV-PBR

Here, we make a rank-1 approximation of the quartic polynomial constraint:

- .
(w'a)t =~ Z w; wj w wi Qijkt,
4,4k, l=1

By matching the diagonal terms, we get ; as
~ 1 n—3 2
o= O = a2, VO (522
Q5 Qun \/n M4, iiis n(n — 1) ((T“)

‘We thus obtain the following convex approximation of (MV-PBR-1):

Wy, pBR1 = arg min wTE w
weRP

st w'l, =1,

(MV-PBR-1)
(w'fin = R),
w' & < VU.

Proposition 2 (Solution to MV-PBR-1) The solution to (MV-PBR-1) with the mean constraint
’LUT,H'TL =Ris
Wn,pBR1 = Wn v — 3 A 5,1 (BL 1, + Ba in + &).

The coefficients 51 and Py are given by
B QTS 0, A S, — aTS M, A S

pr = ;
1 TS0, Al Sn i — (B 50 1,)?




aTS M, S, - AT, 1801,

/82 = = PR —~ Py PR ~
1;2771117 [TAD Y TAES (Nl—zrzllp)Q

Moreover, the solution to (mv-PBR-1) without the mean constraint is
~ ~ -1 ~
Wy, pER1 = Wpmv — 3 A5, (811, + &).

Here Wy, vy is the SAA solution, \* is the optimal Lagrange multiplier for w'é& < VU, and

2.3.2 Best Convex Quadratic Approximation of MV-PBR

We also consider a convex quadratic approximation of the quartic polynomial constraint:

T 2 2)
(wlAw)* = > wiwjwiw Qijk,
i,5,k,1=1
where A is a positive semidefinite (PSD) matrix. Expanding the left-hand side gives
P
E: 1mugwkwLAUAkb

ij k=1

To match the diagonal terms Afj ~ @ijij, we solve the semidefinite program

A* = in [|A—
argmin |4 — Q| r,
where || - || is the Frobenius norm and (Q2);; = Q jij- This leads to the quadratic approximation of

(MV-PBR):

Wp, PBR2 = arg min w' S, w
weRP
T _
st. w1, =1,
T~
(w' fin = R),

w!l A*w < \/ﬁ,

(MV-PBR-2)

Proposition 3 (Solution to MV-PBR-2) With the mean constraint wTﬁn = R, the solution to
(MV-PBR-2) is
Wp,PBR2 = —% S, (A7t (UT(/\*) 1, +v3(\%) ﬁn),

where

Y.\ = S+ N A*, X is the optimal multiplier for w' A*w < VU,
and the weights

Rty Sn(N) "My = fig 20 (A) " in
LTS5 ()M, AT S () i — (A Sn (V) 711,)%

~R1JS, (N, + A, S, (V) 71,
1y B0 (N) ™My Fig B (A)~ in — (g B (A)711p)?

vy(A) =2

Without the mean constraint, the solution is

Sa(V)711,

WpPBR2 = ——————.
1;En(>\*)*11p
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2.4 PBR for Mean—-CVaR Optimization

The PBR formulation for the mean—CVaR problem adds upper-bounds on the variances of both the
CVaR estimator and the sample mean to the SAA model:

Wn, PBR = arg 15%1]112’ m{n(—wTX;ﬁ)

st. w1, =1,
(w' i, = R), (CV-PBR)
SVar(CVaR,, (—w' X; ) < Uy,
SVar(w ' fi,) < Us,

Since

w' S w,

R 1 & 1
Var(wTun) =3 ;Var(wTXi) =

we have

~

SVar(wTﬁn) =n"'w'S,w.

Proposition 4 Under mild smoothness assumptions on the distribution of X, the variance of the
CVaR estimator satisfies

Var [mn(—wTX; B)] = 5 Var[(—wTX - ag(w))+] +0(n™?),

b
n(1—p)

where
ag(w) =inf{a: P(~w'X >a) <1- 8}

is the value-at-risk (VaR) of the portfolio at level 3.

Thus, to first order,

SVar(mn(—wTX; ﬂ)) = ﬁ 2T Q, 2,

where z; = max(0, —w' X; — a)and Q,, = (1/(n — 1))(I, —n~11,1)).

Accordingly, one can write the finite-sample PBR problem with explicit sample-variance constraints
as

: 1 <
min o+ ——7- Zi
o,Ww,z n(l - 5) ;
S.t. lep = 17 (wTﬁn - R)7

1 T (CV-PBR")
- = .TQ, <
n(1—5)2z nz < U,

Z :max(O, —w' X; —a), i=1,...,n,

1 ~
Zw'S,w < Us,
n

3 Calibration of Regularization Level

This section introduces the methodologies and algorithms authors used to search for the optimal
regularization level U*. Due to some limitations of their method, we put forward an alternative
approach for selecting for U*.

3.1 Practical Failure of Original OOS-PBSD Algorithm
Ban et al. [1]] proceed as follows:

1. Compute feasible lower and upper bounds, U and U, to define the search interval.



2. Perform performance-based k-fold cross-validation, using the out-of-sample performance-
based steepest-descent (PBSD) AlgorithmE]to find the fold-wise estimates U~ .

3. Aggregate by taking the arithmetic mean:

U =

El

k
> U,
b=1

However, based on the practical experiments, we found that the OOS-PBSD procedure often gets
stuck in an infinite loop or generates a U™ that is trivial to regularize on the model, resulting portfolio
remains unchanged. We conclude the reasons that OOS-PBSD breaks down as follows:

* Even initialize at the theoretical lower bound U _,, the PBR penalty is still inactive, so w(U)
(and hence Sharpe(w(U))) remains constant over a non-trivial interval.

* Because the algorithm approximates dlzng) by a finite difference %W the re-

sulting %&“’A(U” is neither smooth nor monotonic, violating the smoothness assumptions
of backtracking line search.

* the Armijo condition Sharpe(U — tAU) > Sharpe(U) + atAU% is immediately
satisfied at initial t=1. In this case, the lowest U* only allows to be (1 — --)U_,, without
searching for the [U_,, (1 — -=1-)U_;] ranges.

div

3.2 Alternative Approaches for Selecting the Regularization Level U*

Since our primary objective is to compare the PBR models with the SAA baseline, we aim to
obtain different portfolios under the two approaches. These observations drive the motivation for the
following grid-search approaches.

Geometric-Mean Aggregation In lieu of the arithmetic average, we aggregate the fold-wise
estimates by their geometric mean:

U = (lf[lUib)l/k.

This approach mitigates the influence of extreme U, values, yielding a more balanced and stable
regularization level.

Algorithm 1: Out-of-Sample Performance-Based k-Fold Cross-Validation (OOS-PBCV)

Input: Full training set X¢;,in, number of folds &, target return Ry,rget
Output: Regularization level U*

Randomly split Xi,ai, into & equal folds {X b}]zf:ﬁ

for b +— 1to k do

Define training sets and validation sets

Xﬁb = Xtrain\Xb ) X31 = Xb

train a

Get the best U on this fold according to OOS-Sharpe
U*, < OOS-PBGS(D;’,.. D5, Riarget)

. k
Compute the geometric mean of {U*,}, |

1

k 3
b=1

return U*;




Grid Search over i/ To impose a stronger and more global regularization, we replace the local
descent search with a grid search over an approximately logarithmic grid {U;}7, C U. For each
candidate U;:

1. Solve the PBR problem to obtain w(U;).
2. Compute the deviation ||1(U;) — w(U)|| from the baseline solution @ (U).

We retain only those w(U;) whose deviation lies in the top percentile, then evaluate their out-of-
sample Sharpe ratios. The U™ corresponding to the highest Sharpe among this shortlist is selected.
This procedure is detailed in Algorithm [T]and Algorithm[2]

Algorithm 2: Out-of-Sample Performance-Based Grid Search (OOS-PBGS)

Input: Training set X;ain, validation set X,1;q, method type pbr, target return Ry,yge, fraction
of candidates p, regularization set U/, (confidence level 5 for CVaR-based methods)
Qutput: Selected regularization level U*

Estimate sample statistics:

S|

/:(/:

n . 1 n A .
;xi, Y= — ;(xi—u)(%—u)

Compute the baseline portfolio:

we MV _opt(fi, 3, Riarget), if pbr = mv_pbril
0 CVaR_opt(Xirain, 3, Rearget), if pbr = cvar_pbr

Initialize storage:

N 0, S« 190

foreach U € U do
Compute the regularized portfolio:

mv_pbr_opt(Xtraina ﬂ» 27 U7 Rtarget)7 if pr‘ = mV_Pbl”l
cvar_pbr_opt(Xirain, 5, U, Rtarget), if pbr = cvar_pbr

Compute change in weights and validation Sharpe:

Aw +— w — wy, N +— N U{]|Aw]|2}, S «+ S U {Sharpe(Xatia, w)}

Select top-p candidates by norm change:
m  [px |N]
T < indices of top-m elements in N/
Select best candidate based on Sharpe:

i arngaIXS[i] =  U* + U[i"]

return U*

4 Backtesting

4.1 Data Sources and Description

This study uses daily value-weighted returns of 5- and 10-industry portfolios, constructed based on
the CRSP industry classification from the CRSP database. The dataset is publicly available from the
Kenneth French Data Librar 112]].

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1: Industry-index Fields in CRSP Database
Dataset Industry-index Fields

FF5 Industries Cnsmr, Manuf, HiTec, Hlth, Other
FF10 Industries  NoDur, Durbl, Manuf, Enrgy, HiTec, Telcm, Shops, Hlth, Utils, Other

4.2 Backtesting Setup
The backtesting period spans from 01/01/2010 to 12/31/2019, covering ten years of daily data. We
adopt a rolling window framework to evaluate out-of-sample portfolio performance.

At each iteration, the model is trained using the most recent 7},,;, days of data, and the resulting
optimal weights are applied to the following T} days. The window is then rolled forward by Tiest
days, and the process repeats until the end of the test period.

To evaluate robustness, we conduct experiments across different datasets and parameter configurations.
The grid of experimental settings is as follows:

» Dataset: FF5 (5-industry portfolios), FF10 (10-industry portfolios)
* Training window length (7%,,i,): 60, 120 days

* Rebalancing frequency (7}s;): 60, 20, 10 days

* Target return (R;,qe¢): None (unconstrained), 0, 0.001, 0.002

4.3 Portfolio Strategies
We evaluate the out-of-sample performance of the following five portfolio allocation rules:

* Simply equal weighted

» Sample average approximation (MV-SAA) [Eq.

¢ Performance-based regularization-rankl (MV-PBR-1) [Eq.
» Sample average approximation (CV-SAA) [Eq.

¢ Performance-based regularization (CV-PBR) with U2=co [Eq.

In each PBR variant, we tune the remaining U-parameter to maximize the average out-of-sample
Sharpe ratio over the & folds. A full description of our OOS-PBCV procedure appears in Section [3.2]

4.4 Evaluation Methodology
4.4.1 Out-of-Sample Sharpe Ratio

The out-of-sample daily return at time ¢ is computed as the portfolio-weighted sum of individual
asset returns:

N
re= wi-rg), t=1,...T
=1

where w; is the weight allocated to asset ¢, and rt(i) is the return of asset ¢ on day t.

The Sharpe ratio over the testing period is then calculated as:

1 T T
= T 1
= szf—l ! ; whereF:T E e
\/Tl_l Zt:1(Tt - f)Q t=1

4.4.2 Out-of-Sample Annualized Return

Sharpe =

SR

The out-of-sample cumulative return (CR) at time ¢ is computed as the cumulative compounded
return of the portfolio up to time ¢. Specifically, we define:
t
CR, =[] +r) -1, t=1,....T,

s=1



where 7 is the portfolio return at time s, computed as in the previous section. Convert cumulative
return into annualized return given by:

Annualized Return = (1 + C’RT)% -1

This measure captures the average growth of the portfolio value over the out-of-sample period.

5 Result & Discussion

This section summarizes FF5 and FF10 performance across PBR models, lookback windows, rebal-
ancing frequencies, and return targets.

5.1 Back-Test Results
Our back-test results comprise three components:

* Sharpe ratios — summarised in Tables [2]and 3]
* Annualized returns — summary values are reported in Appendix

* NAV back-testing graphs — visual performance comparisons of net asset values. We
analyze one representative graph in the main textin Figure |1} while the complete set is

provided in Appendix [B.2] [B.3] [B.4] and[B.5]

5.2 FFS5 Sharpe Ratios

Table 2: Sharpe Ratios for FF5 under Different Parameter Configurations

R_target | Lookback Frequency | Equal MV-SAA MV-PBR-1 CV-SAA CV-PBR

None 60 10 0.933 1.080 0.582 0.734 0.674
None 60 20 0.933 1.108 0.667 0.789 0.604
None 60 60 0.933 0.854 0.341 0.702 0.590
None 120 10 0.933 1.043 0.419 0.855 1.021
None 120 20 0.933 1.024 0.452 0.874 1.000
None 120 60 0.933 0.949 0.349 0.862 0.689

0 60 10 0.933 0.816 0.702 0.660 0.946

0 60 20 0.933 0.909 0.752 0.730 0.916

0 60 60 0.933 0.821 0.166 0.554 0.734

0 120 10 0.933 0.845 0.387 0.760 0.776

0 120 20 0.933 0.585 0.206 0.761 0.604

0 120 60 0.933 0.665 0.339 0.633 0.551
0.001 60 10 0.933 0.878 0.790 0.817 0.862
0.001 60 20 0.933 0.951 0.862 0.895 0.912
0.001 60 60 0.933 0.685 0.154 0.534 0.664
0.001 120 10 0.933 0.979 0.402 1.033 0.854
0.001 120 20 0.933 0.880 0.227 0.933 0.547
0.001 120 60 0.933 0.731 0.384 0.839 0.398
0.002 60 10 0.933 0.725 0.795 0.520 0.427
0.002 60 20 0.933 0.784 0.884 0.650 0.653
0.002 60 60 0.933 0.430 0.145 0.215 0.231
0.002 120 10 0.933 0.695 0.117 0.580 0.472
0.002 120 20 0.933 0.564 0.205 0.398 0.266
0.002 120 60 0.933 0.511 0.353 0.596 0.251

Notes. Red entries indicate cases where the PBR-regularized strategy outperforms the unregularized one.

* Mild target helps, aggressive target hurts: Adding a modest return target ([t = 0.001)
boosts Sharpe across most methods (e.g., = 1.033), but pushing it further to 0.002 leads to
sharp declines, especially for MV-PBR-1 (as low as 0.117).



* CVaR models are more robust: CV-PBR consistently outperforms MV-PBR-1, especially
under return constraints. Downside-focused risk regularization appears more resilient in
finite-sample settings.

* Lookback = 60 is often enough: Longer lookbacks (120) offer limited gain and sometimes
degrade performance due to slower adaptation (e.g., MV-SAA drops from 1.108 to 1.024 at
freq = 20).

* Medium rebalancing frequency performs best: Frequency = 20 strikes a good bal-
ance—too frequent (10) leads to noisy weights; too infrequent (60) causes lag (e.g., MV-
PBR-1 peaks at 0.884 for freq = 20).

* PBR can backfire without careful tuning: MV-PBR-1 shows large variability—high when
conditions are favorable, disastrous otherwise. Rank-1 regularization needs caution.

* Equal weight is a strong baseline: Despite zero optimization, equal-weight achieves a
steady 0.933 across all configs. It often beats poorly tuned optimizers and sets a high bar.

5.3 FF10 Sharpe Ratios

Table 3: Sharpe Ratios for FF10 under Different Parameter Configurations

R_target \ Lookback Frequency \ Equal MV-SAA MV-PBR-1 CV-SAA CV-PBR

None 60 10 0.891 1.143 0.773 1.081 1.134
None 60 20 0.891 1.126 0.795 1.034 1.141
None 60 60 0.891 1.010 0.846 0.933 0.942
None 120 10 0.891 1.229 0.713 0.977 0.921
None 120 20 0.891 1.226 0.673 1.173 1.130
None 120 60 0.891 1.148 0.771 1.153 1.108

0 60 10 0.891 1.060 0.653 1.052 1.088

0 60 20 0.891 1.138 0.834 1.248 1.356

0 60 60 0.891 0.821 0.166 0.554 0.734

0 120 10 0.891 1.114 0.739 1.211 1.278

0 120 20 0.891 1.185 0.807 1.312 1.288

0 120 60 0.891 0.964 0.687 0.845 0.996
0.001 60 10 0.891 1.372 0.895 1.323 1.412
0.001 60 20 0.891 1.356 0.996 1.379 1.431
0.001 60 60 0.891 0.685 0.154 0.534 0.664
0.001 120 10 0.891 1.368 0.891 1.344 1.187
0.001 120 20 0.891 1.353 0.928 1.423 1.316
0.001 120 60 0.891 1.098 0.806 1.039 1.148
0.002 60 10 0.891 1.413 1.040 1.183 1.202
0.002 60 20 0.891 1.327 1.063 1.086 1.158
0.002 60 60 0.891 0.756 0.629 0.672 0.654
0.002 120 10 0.891 1.187 0.897 1.034 1.132
0.002 120 20 0.891 1.123 0.903 0.958 0.970
0.002 120 60 0.891 0.911 0.808 0.770 0.899

Notes. Red entries indicate cases where the PBR-regularized strategy outperforms the unregularized one.

* Mild target boosts, aggressive target moderates: Introducing a modest return target
Riarger = 0.001) lifts Sharpe ratios for all methods—most notably CV-PBR, which reaches
1.431 (look-back 60, freq.=20). Pushing the target to 0.002 tempers performance; only
MV-SAA maintains a Sharpe above 1.40, while CV-PBR slips to 1.202.

* CVaR models remain the most robust: Across nearly every configuration with a return
constraint, CV-PBR outperforms MV-PBR-1 (red entries are concentrated in the CV-PBR
column). Downside-risk regularisation is therefore more resilient to factor-model expansion
from FFS5 to FF10.
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* Lookback = 60 is still sufficient: Extending the window to 120 months yields marginal
(sometimes negative) gains. For example, MV-SAA drops from 1.143 (look-back 60,
freq.=10) to 1.229 (look-back 120) under no target, but loses relative ground once a target is
imposed.

* Medium rebalancing frequency performs best: A 20-day schedule balances responsive-
ness and noise. Too frequent (10 days) makes MV-PBR-1 volatile (e.g. Sharpe 0.773); too
infrequent (60 days) causes lag (CV-PBR falls from 1.288 at freq.=20 to 0.996 at freq.=60
for Rtarget = O)

* PBR can still backfire without careful tuning: MV-PBR-1 exhibits large dispersion:
highs of 1.063 (target 0.002, freq.=20), but lows of 0.166 (target 0, freq.=60). Rank-1
regularisation therefore requires cautious calibration.

* Equal weight remains a tough benchmark: The naive portfolio again posts a stable Sharpe
(0.891) and is beaten consistently only by well-tuned MV-SAA and CV-PBR configurations,
underscoring its value as a baseline.

5.4 Annualized Return of MV-PBR-1

Although our earlier Sharpe ratio analysis suggested that MV-PBR-1 under-performs the MV-SAA
strategy on a risk-adjusted basis, its net asset value curve tells a different story.

An example is shown in Figure[I] The MV-PBR-1 portfolio delivers far greater cumulative NAV
growth, reaching almost 20x of initial capital by early 2018, whereas the standard MV-SAA strategy
only grows to about 4x over the same period. This example illustrates that, despite a slightly lower
Sharpe, MV-PBR-1 can produce substantially higher absolute returns in favorable market regimes.

NAV cross Time from 2010-01-03 to 2020-01-03 | lookback = 60 | frequency = 20 | R_target = 0.001

20.04 equal (Sharpe: 0.933, NAV: 3.561)
. mv (Sharpe: 0.951, NAV: 3.779)
—— mv_pbrl (Sharpe: 0.862, NAV: 8.791)
—— cvar (Sharpe: 0.895, NAV: 4.039)
17.5 1 — cvar_pbr (Sharpe: 0.912, NAV: 4.715)
15.0 1
12.5 A
Z
= 10.0
7.54
] /ﬁ-"-" v
R
2.5+ MM'.
0.0 T T T T T T
2010 2012 2014 2016 2018 2020

Date

Figure 1: FF5 Performance with Lookback=60, Frequency=20, Target Return=1e-3

This observation is further supported by Table[#|and Table[5] where the MV-PBR-1 group consistently
achieves the highest annualized return across several configurations—for instance, reaching 23.64%
in one setting compared to only 14.50% for the standard MV-SAA strategy. Such results demon-
strate that, in terms of pure return generation, MV-PBR-1 can significantly outperform traditional
approaches despite exhibiting slightly lower Sharpe ratios.

From Table ] and Table[5] we observe that the MV-PBR-1 strategy delivers significant improvement
in annualized return over the vanilla MV-SAA strategy when the lookback window is short (e.g., 60).
The performance gain is especially notable under more aggressive return targets, where MV-PBR-1
outperforms MV-SAA by a wide margin. However, the advantage diminishes as the lookback window
extends, suggesting that MV-PBR-1 is most effective in more reactive, shorter-horizon settings.
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6 Conclusion

In this paper, we analyze and implement the Performance-Based Regularization (PBR) model for both
mean-variance (MV) and Conditional Value-at-Risk (CVaR) portfolio optimization. Our empirical
results show that the PBR model performs particularly well when applied to CVaR optimization.
Although it underperforms in the MV setting in terms of Sharpe ratio, it still delivers strong annualized
returns overall, making it a promising framework worthy of further investigation.
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A Appendix - Algorithms

A.1 Original OOS-PBCV

Algorithm 3: Out-of-Sample Performance-Based k-Fold Cross-Validation (OOS-PBCV) [1]

Input: Full training set Dy, i, number of folds &
Output: Regularization level U*

Solve PBR(U) on Dy ain t0 g€t Wirain

Compute U = Risky, (—wain” X)
Solve U-min(U) on Dyyaiy to get Wy,
Compute U = Risk,(—wy, TX)

Randomly split Dy, into k equal folds {DP . }¥_ ;s
for b <— 1to k do

Define Dt_rgin = Dtrain \ D'lc)rain
Solve PBR(U) on Dt_rgin to get w_;, Compute U_;, = Riskn(fwleX)
if U_, < U then

\ Set U*, = U and continue;

else

Solve U-min(U/) on D%, to get ™™ Compute U_, = M(—wleX )
if U_, > U then
| SetU*, = U and terminate
else
Update boundaries: U_j, = min(U,U_3), U_, = max(U,U_,)
L Run 00S-PBSD with boundaries [U _,, U_j] to find U*,,

Compute final output: U* = 1 Zle U*ys

Where U-min-MV1 is defined as:

U=min w «
w
s.t. lep =1, (U-min-MV1)
wT/}"n =R,

U-min-MV?2 is defined as:
U=min w'A*w

st. w1, =1, (U-min-MV2)
w' fin, = R,
U-min-CYV is defined as:
U=min z'Q,z

st. w' i, =R,
w’ 1, =1, (U-min-CV)

> —w' X;—a, i=1,...,n,
ZiZO, i=1,...,n,
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A.2 Original OOS-PBSD Algorithm

Algorithm 4: Out-of-Sample Performance-Based Steepest Descent (OOS-PBSD) [1]

Input: Training set D.’. , Valid set D?, . ,, boundaries [U_,, U]
Output: Optimal regularization level U*
Choose backtracking parameters « € (0,0.5), 8 € (0,1);
Choose stepsize Div and perturbation size bit € (0,0.5);
Initialize: U = U_y, AU = (U_, — U_,)/Div, t = 1,
Compute:

dSharpe(U)

dU
where
(@) p — (1) Sy
@7, T
div_o(U) _ p(U) = 0y((1 = bit)V)
dU bit - U
while Sharpe(U — tAU) < Sharpe(U) + atAU - hapell) gq
| Update t = St;
Return U*, = U — tAU,;

VSharpe(w_p,(U)) =

14



B Appendix - Backtesting Performance

B.1 Annualized Returns of Backtest

Table 4: FF5 Annualized Returns

R_target | Lookback Frequency | Equal MV-SAA MV-PBR-1 CV-SAA CV-PBR

None 60 10 13.54% 13.61% 12.14% 10.41% 9.97%
None 60 20 13.54% 13.98% 14.16% 11.21% 8.81%
None 60 60 13.54% 10.71% 5.46% 10.26% 8.71%
None 120 10 13.54% 12.59% 7.59% 10.40% 14.60%
None 120 20 13.54% 12.50% 8.32% 11.48% 15.11%
None 120 60 13.54% 11.29% 5.46% 11.48% 9.86%

0 60 10 13.54% 12.05% 19.11% 9.99% 16.92%

0 60 20 13.54% 13.43% 20.34% 10.97% 16.94%

0 60 60 13.54% 11.66% 1.24% 7.75% 11.87%

0 120 10 13.54% 11.77% 7.99% 11.05% 12.89%

0 120 20 13.54% 11.96% -1.71% 11.09% 9.68%

0 120 60 13.54% 9.87% 591% 9.63% 9.00%
0.001 60 10 13.54% 12.60% 22.67% 11.55% 15.09%
0.001 60 20 13.54% 14.50% 23.64% 13.03% 15.73%
0.001 60 60 13.54% 11.38% 0.13% 7.55% 10.77%
0.001 120 10 13.54% 13.39% 8.47% 15.07% 13.12%
0.001 120 20 13.54% 12.56% 1.20% 14.12% 8.54%
0.001 120 60 13.54% 10.35% 7.54% 12.49% 5.51%
0.002 60 10 13.54% 12.80% 24.89% 9.26% 8.01%
0.002 60 20 13.54% 14.62% 26.67% 11.83% 13.45%
0.002 60 60 13.54% 6.60% —0.86% 2.31% 2.66%
0.002 120 10 13.54% 12.74% —4.07% 11.77% 9.93%
0.002 120 20 13.54% 9.98% -1.37% 7.02% 6.42%
0.002 120 60 13.54% 9.68% 6.54% 11.90% 5.62%

Table 5: FF10 Annualized Returns

R_target \ Lookback Frequency\ Equal MV-SAA MYV-PBR-1 CV-SAA CV-PBR

None 60 10 13.54% 13.61% 12.14% 10.41% 9.97%
None 60 20 13.54% 13.98% 14.16% 11.21% 8.81%
None 60 60 13.54% 10.71% 5.46% 10.26% 8.71%
None 120 10 13.54% 12.59% 7.59% 10.40% 14.60%
None 120 20 13.54% 12.50% 8.32% 11.48% 15.11%
None 120 60 13.54% 11.29% 5.46% 11.48% 9.86%

0 60 10 13.54% 12.05% 19.11% 9.99% 16.92%

0 60 20 13.54% 13.43% 20.34% 10.97% 16.94%

0 60 60 13.54% 11.66% 1.24% 7.75% 11.87%

0 120 10 13.54% 11.77% 7.99% 11.05% 12.89%

0 120 20 13.54% 11.96% -1.71% 11.09% 9.68%

0 120 60 13.54% 9.87% 591% 9.63% 9.00%
0.001 60 10 13.54% 12.60% 22.67% 11.55% 15.09%
0.001 60 20 13.54% 14.50% 23.64% 13.03% 15.73%
0.001 60 60 13.54% 11.38% 0.13% 7.55% 10.77%
0.001 120 10 13.54% 13.39% 8.47% 15.07% 13.12%
0.001 120 20 13.54% 12.56% 1.20% 14.12% 8.54%
0.001 120 60 13.54% 10.35% 7.54% 12.49% 5.51%
0.002 60 10 13.54% 12.80% 24.89% 9.26% 8.01%
0.002 60 20 13.54% 14.62% 26.67% 11.83% 13.45%
0.002 60 60 13.54% 6.60% -0.86% 2.31% 2.66%
0.002 120 10 13.54% 12.74% —4.07% 11.77% 9.93%
0.002 120 20 13.54% 9.98% -1.37% 7.02% 6.42%
0.002 120 60 13.54% 9.68% 6.54% 11.90% 5.62%
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B.2 FFS5 (Lookback = 60) Backtest Net Asset Value (NAV) Figures
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B.3 FFS5 (Lookback = 120) Backtest Net Asset Value (NAV) Figures
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FF10 (Lookback = 60) Backtest Net Asset Value (NAV) Figures
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B.5 FF10 (Lookback = 120) Backtest Net Asset Value (NAV) Figures
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