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Abstract

In recent years, considerable efforts have been devoted to developing algorithmic
trading strategies. One popular method is to train intelligent trading agent through
reinforcement learning (RL). In this review, we mainly talked about the applications
of deep reinforcement learning methods and corresponding techniques in algo-
rithmic trading. We first formalize the financial trading problem into the Markov
Decision Process setting with constraints. Then we presented RL methods and their
applications including value-based, policy-based, and actor-critic methods. Finally,
we summarize the techniques for RL in trading including overfitting detection, auto
adaption for financial markets, and ensemble methods.

1 Introduction

Traditional approaches for modelling financial decision problems are techniques like stochastic
control. With the rapid development of reinforcement learning (RL), recent studies focus on the
combination of RL methods and financial trading. Reinforcement learning, based on its property
of learning from rewards, provides a new paradigm to financial trading and outperforms traditional
trading strategies in certain areas. In this review, we summarized different RL-based methods and
techniques that are used in financial trading and investigated the effectiveness.

1.1 Algorithmic Trading

Algorithmic trading is a process for executing orders on financial assets to maximize the net value
at the end of a trading period. Nowadays it is considered as quite profitable and develops quickly
around the world. In 2020, quantitative trading accounts for over 70% and 40% trading volume in
developed market (e.g., U.S.) and emerging market (e.g., China), respectively [17].

1.2 Motivation of Applying RL on Algorithmic Trading

The overall objective of algorithmic trading is to maximize long-term profit , which shares similarity
with the goal of reinforcement learning (i.e., maximizing cumulative rewards over time). Therefore,
reinforcement learning is applied to design profitable trading strategies by training a trading agent [7].
After the training process, the trading agent makes profit through buying and selling financial assets
based on provided market information.

1.3 Advantages of RL in Algorithmic Trading

• RL allows training an end-to-end agent, which combines the mixture problem of price
prediction and time selection into a single policy searching problem [17].

• RL-based methods can easily convert task-specific constraints like transaction cost into the
environment setting [7, 20].



1.4 Challenges of RL in Algorithmic Trading

Traditional reinforcement learning tasks are from fields like robotics and games. For example, Atari
is a popular benchmark environment for reinforcement learning algorithms, which involves training
a learning agent to play classic Atari games. Different from such well-defined tasks, algorithmic
trading is much more difficult due to the following challenges:

• Data instability: The financial time series is usually unstable and non-stationary, containing
a lot of noise, jumping and moving, which makes it difficult to apply gradient-based learning
algorithms [7, 12]. The assumption that the context variables are Markovian fails [4] .

• Data complexity: It is difficult to summarize and represent the highly complex financial
environment, especially the high-frequency financial data [12].

• Exploration and exploitation dilemma: The existence of transaction costs hinder the
trading agent from exploration, and thus a low-level of exploration in feasible in financial
trading setting [7].

2 Background

2.1 Markov Decision Process Formalization

Usually, an algorithmic trading process can be modeled into a discrete MDP with finite time horizon
(t = 0, 1, · · · , T ). The ultimate goal is to obtain the trading strategy (i.e., policy π(s)) that maximizes
the cumulative return

∑T−1
t=0 r(st, at, st+1).

The vanilla formalization of MDP is based on the Zero Market Impact hypothesis, which assumes
market participators have no impact on the current market condition [7]. This MDP takes price as the
only financial information and combines it with the holding positions as the state space [9, 11].

• State s = [p, h, b]: a set that includes the information of the prices of assets p ∈ RD
+ , the

amount of holdings of assets h ∈ ZD
+ , and the remaining balance b ∈ R+, where D is the

number of assets that we consider in the market.
• Action a: a set of actions on all D assets. The available actions of each asset include selling,

holding, and buying:
– Selling: at[d] = −k ∈ [−ht(d),−1], and ht+1(d) = ht(d)− k.
– Holding: at[d] = 0, and ht+1(d) = ht(d).
– Buying: at[d] = k > 0, and ht+1(d) = ht(d) + k.

• Reward r (s, a, s′): the change of the portfolio value v when action a is taken at state s and
arriving at the new state s′. The portfolio value vt = pT

t ht + bt is the sum of the equities in
all held assets and remaining balance.

Figure 1: Illustration of actions [21] Figure 2: Illustration of price movement [12]

However, in reality, the financial market is much more complicated and risk management is usually
considered in financial trading. Therefore, other enhanced MDP formalizations adds market features
into the state space [7, 21] and adopts more well-performed reward functions [7, 18, 20], but usually
leaving action space unchanged.
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• State s = [p, h, b,M ] : When M represents the market features. Usually it consists of
some technical factors reflecting price trend and volume change, like Moving Average
Convergence Divergence (MACD) and Relative Strength Index (RSI).

• Reward r (s, a, s′): Advanced reward functions may consider other measures. In the work
DeepTrader: A Deep Reinforcement Learning Approach for Risk-Return Balanced
Portfolio Management with Market Conditions Embedding [19], the authors adopt
reward functions including (i) profit criterion like return (ii) risk criterion like annualized
volatility and maximum drawdown (iii) risk-profit criterion like Sharpe ratio and Calmar
ratio. And their experiments show that the maximum drawdown reaches a significantly
better control of risk without losing much return, which is considered as the best.

2.2 Importing Financial Trading Constraints

• Transaction cost: Each trade contains a part of transaction cost, and different brokers
acquire varying commission fees. For example, in cryptocurrency trading, the transaction
cost is often assumed as 0.3% of the value of each trade [5]. Therefore, the reward function
based on net profit becomes

r (st,at, st+1) =
(
bt+1 + p⊤

t+1ht+1

)
−

(
bt + p⊤

t ht

)
− ct,

and the transactions cost ct is
ct = p⊤

t |at| × 0.3%

where |at| means taking entry-wise absolute value of at [5].
• Restriction on short: In many financial trading setting, short selling is restricted due to legal

regulations and its high cost. And this restriction is easy to be embedded in RL environments.
Suppose We do not allow short, then we make sure that bt+1 ∈ R+ is non-negative,

bt+1 = bt + p⊤
t a

S
t + p⊤

t a
B
t ≥ 0, for t = 0, . . . , T − 1

where aS
t ∈ RD

− and aB
t ∈ RD

+ denote the selling orders and buying orders, respectively,
such that at = aS

t + aB
t . Therefore, action at is executed as follows: first execute the

selling orders aS
t ∈ RD

− and then the buying orders aB
t ∈ RD

+ ; and if there is not enough
cash, a buying order will not be executed [5].

3 Algorithms

Model-free deep reinforcement learning algorithms are divided into 3 categories: Value-Based,
Policy-Based, and Actor-Critic [15]. Value-Based methods aim to learn the optimal action-value
function for a given state; Policy-Based methods directly learn the optimal policy that maps a state to
an action; Actor-Critic methods combine value-based and policy-based methods by learning both an
action-value function and a policy. In this section, we briefly introduce a DRL algorithm for each
category and illustrate how those methods are applied in financial trading domain.

3.1 Value-Based RL

Deep Q-learning Networks (DQN) [14] A DQN approximates the action value function (Q function)
to estimates how good it is for the agent to perform a given action in a given state by adopting a neural
network [23]. Suppose our Q function is parameterised by some θ, which can be updated through
backpropagation. The goal is to minimize the MSE between the current and target Q functions to
derive the optimal state-action value function:

L(θ) = E(s,a,r,s′)

[(
r + γmax

a′
Qθ− (s′, a′)−Qθ (s, a)

)2
]

One related work is Financial Trading as a Game: A Deep Reinforcement Learning Approach [7].
This work constructs the state space with time features, market features, and position features and
uses the log return of portfolio value as the reward function. The author adopts Deep Recurrent
Q-Network (DRQN), which means using LSTM as the Q-network to better process sequence data.

Most importantly, to mitigate the need for random exploration, the authors propose a novel vector-
formed loss function called action augmentation loss [7]. Action augmentation loss is implemented
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by offering additional feedback signals to the agent for all actions taken. And this modification gains
an additional 6.4% annual return in average compared with ϵ-greedy method.

L̃(θ) = E(s,a,r,s′)

[∥∥∥r + γQθ−

(
s′, argmax

a′
Qθ (s

′, a′)
)
−Qθ(s,a)

∥∥∥2]
There are several other need-to-mention modifications of training process in this work, which are
helpful for value-based RL methods in trading:

• Smaller replay buffer: Different from the large replay buffers (N > 106) commonly required
for value-based deep RL, they find adopting a much smaller (N = 480) replay buffer is more
helpful. They attribute it to the “short-termism” property of financial time series, which
means recent data carries more weight than past data in financial time series.

• Longer sampling sequence length: Motivated by the fact that a profitable trading strategy
often requires opening a position at an optimal time and maintaining it for a sufficiently long
period before closing it, the authors draw longer sequences (T = 96) from the replay buffer
compared to the original DRQN paper [6].

3.2 Policy-Based RL

Trust Region Policy Optimization (TRPO) [16] TRPO aims to improve the stability and conver-
gence speed of policy optimization. It adopts a trust region approach, which constrains the maximum
KL-divergence between the updated policy and the previous policy. This constraint ensures that the
updated policy only makes small changes to the policy distribution, which in turn helps to improve
stability. Its objective optimization problem is shown as below:

max
π

L(π) = Eπold

[
π(a | s)

πold(a | s)
Aπold(s, a)

]
s.t. Eπold

[dKL (π∥πold)] ≤ ϵ

One related work is Risk-Averse Trust Region Optimization for Reward-Volatility Reduction [2].
The authors highlighted the issue of controlling the risk in the intermediate steps of trading. Therefore,
they developed a novel measure of risk to address this issue, which is called "reward volatility". This
measure is based on the variance of rewards under the state-occupancy measure and is shown to
bound the return variance. It combines normalized expected return Jπ and reward volatility ν2π to get
the objective function ηπ = Jπ − λν2π , where Jπ and ν2π are defined as:

Jπ = (1− γ) E
a∼π(·|s)

[ ∞∑
t=0

γtR (st, at)

]
= E

a∼π(·|s)
[R(s, a)]

ν2π = E
a∼π(·|s)

[
(R(s, a)− Jπ)

2
]
= (1− γ) E

a∼π(·|s)

[ ∞∑
t=0

γt (R (st, at)− Jπ)
2

]
The authors prove that the performance of attained η for the policy π̃ is lower bounded. They adapt
TRPO with the risk averse measure and proposed their Trust Region Volatility Optimization (TRVO)
method, which exploits a monotonic improvement bound of the objective. Finally, the author applied
TRVO on equity index S&P 500 and Foreign Exchange (FX). In Figure 3, the authors find TRVO
outperforms the baseline models by achieving better Pareto frontiers in short time.

Figure 3: training (a) and testing (b) on S&P 500; training (c) and testing (d) on FX [2]
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3.3 Actor-Critic RL

Deep Deterministic Policy Gradient (DDPG) [10] DDPG is improved from Deterministic Policy
Gradient (DPG). DDPG directly learns from observations through policy gradient. It is designed to
deterministically map states to actions to better adapt to the continuous action space environment,
so it is appropriate for financial trading. DDPG is updated by minimizing the following MSBE loss
L(ϕ) and maximizing Qϕ(s, a):

L(ϕ) = E
(s,a,r,s′,d)

[(
Qϕ(s, a)−

(
r + γ(1− d)Qϕtarg

(
s′, µθtarg (s

′)
)))2]

max
θ

E
s
[Qϕ (s, µθ(s))]

One related work is Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learn-
ing for Stock Portfolio Allocation [9]. In this paper, the authors proposed Adaptive DDPG for
algorithmic trading, which is shown in Figure 4. The temporal difference (TD) error, given by
δ(t) = r(st, at, st+1)−Qπ(st, at) is considered as environment emotional news in this work. They
make intuitive adjustments to the actor network part by adjusting the learning rate α+ and α−

corresponding to positive and negative environment emotional news.

Qπ(st+1, at+1) = Qπ(st, at) +

{
α+δ(t), if δ(t) > 0

α−δ(t), if δ(t) < 0

Adaptive DDPG adopts both optimistic and pessimistic DRL by modifying the Q-learning algorithm
by RW± model [8], Therefore, when TD error is positive, which implies that the actual reward
r(st, at, st+1) is better than the expected reward Qπ(st, at), the amplitude of α+ can determine the
step from one trial to the next; reversely, the amplitude of α+ will be adjusted based on the signs of
sequential TD errors.

Figure 4: Adaptive DDPG architecture [9]
Figure 5: The market index during the testing
data and the corresponding learning rate [9]

As shown in Figure 5, this dynamic adjustment of learning rate based on sequential TD errors is
helpful in different market conditions. When the trend effect is strong, the actor network will be
updated with a high learning rate; when the fluctuation effect is strong, the actor network turns
reduces its learning rate to reduce its exposure to the high-noise period. To illustrate the effect of
Adaptive DDPG, the authors select Dow Jones 30 component stocks as trading stocks and trading
them with different DRL methods. As shown in Table 1, the Adaptive DDPG has a much better
performance than other strategies. Adaptive DDPG creates a significantly higher return with lower
risk. The auto adaption of learning rate is a simple but useful design.

Method Adaptive DDPG DDPG DJIA Min-variance Mean-variance
Initial value 10,000 10,000 10,000 10,000 10,000
Final value 21,880 18,156 16,089 16,333 19,632

Annualized return 18.84% 14.71% 11.36% 11.48% 15.86%
Annualized Std. error 11.59% 14.68% 12.43% 11.64% 12.70%

Sharpe ratio 1.63 1.01 0.91 0.99 1.25

Table 1: Trading performance of Adaptive DDPG [9]
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4 Techniques

4.1 Overfitting Detection

Overfitting is a common issue for machine learning in the training periods of financial trading. [1].
This problem hinders the trained RL agents from performing continuously well with time.

One related work for addressing overfitting is Deep Reinforcement Learning for Cryptocurrency
Trading: Practical Approach to Address Backtest Overfitting [5]. To overcome this issue, they
raise a detection technique for over-fitted agents. Their detection procedure of overfitting contains
three steps: (i) implement random split of training-validation data and get multiple groups (ii) set a
set of hyperparameters for tuning (iii) evaluate the agent’s performance on all validation set and get
average performance for length T ′ (smaller than T because of split). They repeat the detection H

times and get a matrix M ∈ RT ′×H . They randomly split the M across rows into four sub-matrices
M1,M2,M3,M4 ∈ RT ′/4×H , where each sub-matrices represent the average performance over
length T ′/4. Setting two of them as the in-sample (IS) set and two of them as the out-of-sample
(OOS) set,

c =

[
M1

M2

]
, IS set ; c̄ =

[
M3

M4

]
,OOS set

the initial paper investigate backtest overfitting [1] by comparing whether the best performance in
IS set is better than the median performance in OOS set. The authors in this work develops a more
quantitative method. Define ϵ as the index of the bestperforming IS strategy. Then, they check the
corresponding OOS rank rc[ϵ] and define a relative rank ωc:

ωc =
rc[ϵ]

H + 1
,where c is a possible split

Then the corresponding logit function is defined as:

λc = ln
ωc

1− ωc
,where c is a possible split

The authors integrate over the region where the best strategy IS has an expected ranking lower than
the OOS set,

p =

∫ 0

−∞
f(λ)dλ

and get the probability function to characterize the probability p of overfitting. The trained agent is
assumed to be overfitted if p < α.

Finally, the authors adopt 3 DRL algorithms (PPO, TD3, and SAC) and test their performance on
trading over 10 cryptocurrencies. Setting a threshold of α = 10%, they tested the probability of
overfitting over the three agents, where the probabilities of overfitting are: p(PPO) = 8.0% < α,
p(TD3) = 9.6% < α , and p(SAC) = 21.3% > α (rejected). In Figure 6, we can find PPO
(cumulative return > 24%) is significantly better than other trading agents. The lower volatility of
PPO implies its better robustness toward risk under different market conditions.

Figure 6: The average trading cumulative return curves for DRL algorithms [5]
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4.2 Auto Adaption for Financial Markets

In financial trading area, modern investment strategies rely on investigating historical patterns that
can be quantified in a systematic way, which is called backtesing [1]. Due to the structure breaks in
financial markets, the RL algorithms suffer from non-stationarity, which significantly increases the
difficulty for optimizing the algorithms [4]. Researchers designed many adaptive methods to fit the
non-stationary time series like segmentation based on different patterns across segments of series [4].

One related work Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning
for Stock Portfolio Allocation [9] is an article we have already mentioned in the Section 3.2 . This
work adopts dynamic learning rate based on optimistic and pessimistic market condition and improves
the performance of DDPG in stock trading [9].

Another related work is Adaptive Quantitative Trading: An Imitative Deep Reinforcement
Learning Approach [12] The authors first formulate the algorithmic trading process into a Partially
Observable Markov Decision Process (POMDP), so that the non-observable underlying states can
also be modelled. Based on the POMDP framework and imitation learning techniques, the authors
proposed their model imitative Recurrent Deterministic Policy Gradient (iRDPG).

Figure 7: Architecture of iRDPG [12]

In their POMDP framework for algorithmic trading, the agent receives an observation ot from the
market and personal account at each time period. The observation contains the market price p,
technical indicators q and the account profit r. Though the underlying market state is non-observable,
the trained trading agent may benefit from the history H . As shown in Figure 7, the observation-
action history H can be described as ht = (o1, a1, · · · , ot−1, at−1, ot). The authors adopt the GRU
network to get the next hidden state after each action and next observation:

ht = GRU(ht−1, at−1, ot)

For the Imitative learning part, the authors adopt a demonstration buffer and behavior cloning, the
trading agent can learn a fundamental strategy at the early stage of the trading process. Finally, the
authors present the generalization ability of iRDPG in different markets are good. They conducted
the iRDPG algorithm on both IF and IC futures market. As shown in Table 2, the base line model
Dual Thrust Strategy performs totally different on two futures markets. In contrast, the performance
of iRDPG is much more stable and consistent on the both markets.

Methods Data Total Return (%) Sharpe ratio Volatility Maxium Drawdown (%)

Dual Thrust IF 43.40 1.110 0.369 17.24
IC -35.59 -0.577 0.700 65.51

iRDPG IF 38.26 0.842 0.422 26.57
IC 24.73 0.413 0.521 29.35
Table 2: Performance of comparison methods on IF and IC [12]
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4.3 Ensemble Methods

Ensemble methods are widely applied in financial trading environment [3, 21, 22]. There are several
reasons for using ensemble models of in algorithmic trading:

• Agents trained with RL algorithms are sensitive to different market conditions [15], which
makes them adapted to several certain types of market.

• The Different RL models can to some extent diversify our selection of assets [22] and
therefore reduce the investment risk [13].

One related work is Deep Reinforcement Learning for Automated Stock Trading: An Ensemble
Strategy [21]. Actually, the approach that the authors pick the best model to trade is very easy. First,
they train 3 RL trading agents (PPO, A2C, and DDPG) parallelly. Then they use a growing window
as the training set and a 3-month rolling window as the validation set. Then for each three months,
they select the model with the highest Sharpe ratio in the validation set to trade in the next 3 months,
where Sharpe ratio is defined as

Sharpe ratio =
r̄p − rf

σp
.

As we can see from the cumulative return in Figure 8 and Table 3, the ensemble method attains best
balance between return and risk. The idea of ensemble method is quite intuitive and the performance
is good based on the simple modification.

Figure 8: Plot of cumulative return for different strategies [21]

Ensemble PPO A2C DDPG Min-Variance DJIA
Cumulative Return 70.4% 83.0% 60.0% 54.8% 31.7% 38.6%

Annual Return 13.0% 15.0% 11.4% 10.5% 6.5% 7.8%
Annual Volatility 9.7% 13.6% 10.4% 12.3% 17.8% 20.1%

Sharpe Ratio 1.30 1.10 1.12 0.87 0.45 0.47
Max Drawdown −9.7% −23.7% −10.2% −14.8% −34.3% −37.1%

Table 3: Performance comparison among different strategies [21]

Another related work is Dynamic stock-decision ensemble strategy based on deep reinforcement
learning [22], which is on the basis of the previous work [21]. The authors proposed Weighted
Random Strategy with Confidence (WRSC) for ensembling. And the idea is again very simple. First
they choose the agent with the highest annual return as the best agent and check its confidence over
the chosen action of best agent. If the confidence is higher than a threshold, then the action of the
best agent is executed. If the confidence is lower than the threshold, then with the confidence of the
rest 2 agents’ actions as the weights, WRSC randomly selects an agent and execute its action. The
work flow can be found in Figure 9.

Therefore, after using the ensemble methods, the strategy can adaptively choose the best agent among
the trading agents and the random selection to some extent added the robustness of the whole model.
The performance of WRSC on U.S. stock market shown in Figure 10 beats the others.
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Figure 9: Workflow of the Weighted Random Strategy with Confidence (WRSC) strategy [22]

Figure 10: Cumulative return of WRSC in U.S. stock markets [22]

Therefore, the underlying idea for current ensemble methods are similar: choosing the best trading
agent among the trained ones. But the relevant works have not taken an internal-ensemble pattern of
different RL agents into account, which may be combined with meta learning and further explored in
the future.

5 Conclusion

In this review, we mainly talked about the applications of deep reinforcement learning methods and
corresponding techniques in algorithmic trading. We first formalize the financial trading problem
into the Markov Decision Process setting with constraints. Then we presented RL methods and their
applications including value-based, policy-based, and actor-critic methods. Finally, we summarize
the techniques for RL in trading including (i) overfitting detection (ii) auto adaption for financial
markets (iii) ensemble methods.

The objectives for future work may include (i) explore more advanced RL models (ii) increase
adaption of RL methods for financial trading (iii) incorporate with more schemes like price prediction,
risk aversion, and anomaly detection (iv) improve the robustness of the algorithms (v) make the
models more interpretable.
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